DETERMINATION OF A TWO-DIMENSIONAL HEAT SOURCE : UNIQUENESS, REGULARIZATION AND ERROR ESTIMATE

Abstract : Let $Q$ be a heat conduction body and let $\varphi = \varphi(t)$ be given. We consider the problem of finding a two-dimensional heat source having the form $\varphi(t)f(x,y)$ in $Q$. The problem is ill-posed. Assuming $\partial Q$ is insulated and $\varphi \not\equiv 0$, we show that the heat source is defined uniquely by the temperature history on $\partial Q$ and the temperature distribution in $Q$ at the initial time $t = 0$ and at the final time $t = 1$. Using the method of truncated integration and the Fourier transform, we construct regularized solutions and derive explicitly error estimate.
Type de document :
Article dans une revue
Journal of Computational and Applied Mathematics, Elsevier, 2006, 191, pp.50-67
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00009236
Contributeur : Alain Pham Ngoc Dinh <>
Soumis le : jeudi 29 septembre 2005 - 16:09:10
Dernière modification le : jeudi 3 mai 2018 - 15:32:06
Document(s) archivé(s) le : jeudi 1 avril 2010 - 22:35:02

Fichiers

Identifiants

  • HAL Id : hal-00009236, version 1

Citation

Dang Duc Trong, Pham Hoang Quan, Alain Pham Ngoc Dinh. DETERMINATION OF A TWO-DIMENSIONAL HEAT SOURCE : UNIQUENESS, REGULARIZATION AND ERROR ESTIMATE. Journal of Computational and Applied Mathematics, Elsevier, 2006, 191, pp.50-67. 〈hal-00009236〉

Partager

Métriques

Consultations de la notice

247

Téléchargements de fichiers

189