Skip to Main content Skip to Navigation
Journal articles

The exploration process of inhomogeneous continuum random trees, and an extension of Jeulin's local time identity

Abstract : We study the inhomogeneous continuum random trees (ICRT) that arise as weak limits of birthday trees. We give a description of the exploration process, a function defined on [0,1] that encodes the structure of an ICRT, and also of its width process, determining the size of layers in order of height. These processes turn out to be transformations of bridges with exchangeable increments, which have already appeared in other ICRT related topics such as stochastic additive coalescence.The results rely on two different constructions of birthday trees from processes with exchangeable increments, on weak convergence arguments, and on general theory on continuum random trees.
Document type :
Journal articles
Complete list of metadata

Cited literature [31 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00001253
Contributor : Grégory Miermont <>
Submitted on : Monday, March 8, 2004 - 4:42:55 PM
Last modification on : Thursday, December 10, 2020 - 12:37:01 PM
Long-term archiving on: : Monday, March 29, 2010 - 5:30:59 PM

Files

Identifiers

Citation

David Aldous, Grégory Miermont, Jim Pitman. The exploration process of inhomogeneous continuum random trees, and an extension of Jeulin's local time identity. Probability Theory and Related Fields, Springer Verlag, 2004, 129, pp.182-218. ⟨10.1007/s00440-003-0334-7⟩. ⟨hal-00001253⟩

Share

Metrics

Record views

573

Files downloads

382