Strain-Induced Spin-Resonance Shifts in Silicon Devices

Abstract : In spin-based quantum information processing devices, the presence of control and detection circuitry can change the local environment of a spin by introducing strain and electric fields, altering its resonant frequencies. These resonance shifts can be large compared to intrinsic spin line-widths and it is therefore important to study, understand and model such effects in order to better predict device performance. Here we investigate a sample of bismuth donor spins implanted in a silicon chip, on top of which a superconducting aluminium micro-resonator has been fabricated. The on-chip resonator provides two functions: first, it produces local strain in the silicon due to the larger thermal contraction of the aluminium, and second, it enables sensitive electron spin resonance spectroscopy of donors close to the surface that experience this strain. Through finite-element strain simulations we are able to reconstruct key features of our experiments, including the electron spin resonance spectra. Our results are consistent with a recently discovered mechanism for producing shifts of the hyperfine interaction for donors in silicon, which is linear with the hydrostatic component of an applied strain.
Type de document :
Article dans une revue
Physical Review Applied, American Physical Society, 2018, 9, pp.044014. 〈10.1103/PhysRevApplied.9.044014〉
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger
Contributeur : Dominique Girard <>
Soumis le : mardi 26 juin 2018 - 16:42:13
Dernière modification le : vendredi 29 juin 2018 - 01:10:27


Fichiers produits par l'(les) auteur(s)



J. Pla, A. Bienfait, G. Pica, J. Mansir, F Mohiyaddin, et al.. Strain-Induced Spin-Resonance Shifts in Silicon Devices. Physical Review Applied, American Physical Society, 2018, 9, pp.044014. 〈10.1103/PhysRevApplied.9.044014〉. 〈cea-01824000〉



Consultations de la notice


Téléchargements de fichiers