Strain-Induced Spin-Resonance Shifts in Silicon Devices

Abstract : In spin-based quantum information processing devices, the presence of control and detection circuitry can change the local environment of a spin by introducing strain and electric fields, altering its resonant frequencies. These resonance shifts can be large compared to intrinsic spin line-widths and it is therefore important to study, understand and model such effects in order to better predict device performance. Here we investigate a sample of bismuth donor spins implanted in a silicon chip, on top of which a superconducting aluminium micro-resonator has been fabricated. The on-chip resonator provides two functions: first, it produces local strain in the silicon due to the larger thermal contraction of the aluminium, and second, it enables sensitive electron spin resonance spectroscopy of donors close to the surface that experience this strain. Through finite-element strain simulations we are able to reconstruct key features of our experiments, including the electron spin resonance spectra. Our results are consistent with a recently discovered mechanism for producing shifts of the hyperfine interaction for donors in silicon, which is linear with the hydrostatic component of an applied strain.
Document type :
Journal articles
Liste complète des métadonnées

Cited literature [32 references]  Display  Hide  Download

https://hal-cea.archives-ouvertes.fr/cea-01824000
Contributor : Dominique Girard <>
Submitted on : Tuesday, June 26, 2018 - 4:42:13 PM
Last modification on : Thursday, April 4, 2019 - 5:08:05 PM
Document(s) archivé(s) le : Wednesday, September 26, 2018 - 9:50:40 PM

File

1608.07346.pdf
Files produced by the author(s)

Identifiers

Citation

J. Pla, A. Bienfait, G. Pica, J. Mansir, F Mohiyaddin, et al.. Strain-Induced Spin-Resonance Shifts in Silicon Devices. Physical Review Applied, American Physical Society, 2018, 9, pp.044014. ⟨10.1103/PhysRevApplied.9.044014⟩. ⟨cea-01824000⟩

Share

Metrics

Record views

172

Files downloads

67