The $Ectocarpus$ genome and the independent evolution of multicellularity in brown algae

J. Mark Cock 1 Lieven Sterck 2 Pierre Rouzé 2 Delphine Scornet 1 Andrew E. Allen 3 Grigoris Amoutzias 2 Veronique Anthouard 4 François Artiguenave 4 Jean-Marc Aury 4 Jonathan H. Badger 5, 3 Bank Beszteri 6 Kenny Billiau 2 Eric Bonnet 2, 7 John H. Bothwell 5 Chris Bowler 8 Catherine Boyen 1 Colin Brownlee 9 Carl J. Carrano 10 Bénédicte Charrier 1 Ga Youn Cho 1 Susana M. Coelho 1 Jonas Collén 1 Erwan Corre 11 Corinne da Silva 4 Ludovic Delage 1 Nicolas Delaroque 12 Simon M. Dittami 1 Sylvie Doulbeau 13 Marek Elias 14 Garry Farnham 9 Claire M. M. Gachon 15 Bernhard Gschloessl 1 Svenja Heesch 1 Kamel Jabbari 4, 8 Claire Jubin 4 Hiroshi Kawai 16 Kei Kimura 17 Bernard Kloareg 1 Frithjof C. Küpper 15 Daniel Lang 18 Aude Le Bail 1 Catherine Leblanc 1, 19 Patrice Lerouge 20 Martin Lohr 21 Pascal J. Lopez 22 Cindy Martens 2 Florian Maumus 23 Gurvan Michel 1 Diego Miranda-Saavedra 24 Julia Morales 25 Hervé Moreau 26 Taizo Motomura 17 Chikako Nagasato 17 Carolyn A. Napoli David R. Nelson Pi Nyvall-Collén 1 Akira F. Peters 1 Cyril Pommier Philippe Potin 1 Julie Poulain 4 Hadi Quesneville 27 Betsy Read 28 Stefan A. Rensing 18 Andrés Ritter 1, 29 Sylvie Rousvoal 1 Manoj Samanta 30 Gaelle Samson 4 Declan C. Schroeder Béatrice Ségurens 4 Martina Strittmatter 15 Thierry Tonon 1 James W. Tregear 13 Klaus Valentin 6 Peter von Dassow 19 Takahiro Yamagishi Yves van de Peer 2 Patrick Wincker 4
Abstract : Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed $Ectocarpus\ siliculosus$ (Dillwyn) Lyngbye, a model organism for brown algae closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The $Ectocarpus$ genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further
Document type :
Journal articles
Complete list of metadatas

Cited literature [27 references]  Display  Hide  Download

https://hal-cea.archives-ouvertes.fr/cea-00906990
Contributor : Bruno Savelli <>
Submitted on : Tuesday, October 15, 2019 - 1:18:08 PM
Last modification on : Wednesday, December 11, 2019 - 2:44:08 PM

File

Coc.pdf
Publisher files allowed on an open archive

Licence


Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International License

Identifiers

Citation

J. Mark Cock, Lieven Sterck, Pierre Rouzé, Delphine Scornet, Andrew E. Allen, et al.. The $Ectocarpus$ genome and the independent evolution of multicellularity in brown algae. Nature, Nature Publishing Group, 2010, 465 (7298), pp.617-621. ⟨10.1038/nature09016⟩. ⟨cea-00906990⟩

Share

Metrics

Record views

1517

Files downloads

39