Testing over a continuum of null hypotheses with False Discovery Rate control

Abstract : We consider statistical hypothesis testing simultaneously over a fairly general, possibly uncountably infinite, set of null hypotheses, under the assumption that a suitable single test (and corresponding $p$-value) is known for each individual hypothesis. We extend to this setting the notion of false discovery rate (FDR) as a measure of type I error. Our main result studies specific procedures based on the observation of the $p$-value process. Control of the FDR at a nominal level is ensured either under arbitrary dependence of $p$-values, or under the assumption that the finite dimensional distributions of the $p$-value process have positive correlations of a specific type (weak PRDS). Both cases generalize existing results established in the finite setting. Its interest is demonstrated in several non-parametric examples: testing the mean/signal in a Gaussian white noise model, testing the intensity of a Poisson process and testing the c.d.f. of i.i.d. random variables.
Type de document :
Article dans une revue
Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2014, pp.304-333. <10.3150/12-BEJ488>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00632783
Contributeur : Etienne Roquain <>
Soumis le : jeudi 6 février 2014 - 21:31:42
Dernière modification le : jeudi 27 avril 2017 - 09:46:42
Document(s) archivé(s) le : mercredi 7 mai 2014 - 04:40:30

Fichiers

bej488.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

UPMC | USPC | PMA

Citation

Gilles Blanchard, Sylvain Delattre, Etienne Roquain. Testing over a continuum of null hypotheses with False Discovery Rate control. Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2014, pp.304-333. <10.3150/12-BEJ488>. <hal-00632783v3>

Partager

Métriques

Consultations de
la notice

228

Téléchargements du document

101