Random right eigenvalues of Gaussian quaternionic matrices

Abstract : We consider a random matrix whose entries are independent Gaussian variables taking values in the field of quaternions with variance $1/n$. Using logarithmic potential theory, we prove the almost sure convergence, as the dimension $n$ goes to infinity, of the empirical distribution of the right eigenvalues towards some measure supported on the unit ball of the quaternions field. Some comments on more general Gaussian quaternionic random matrix models are also made.
Document type :
Preprints, Working Papers, ...
2011
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00587958
Contributor : Francois Chapon <>
Submitted on : Friday, September 2, 2011 - 10:32:18 AM
Last modification on : Thursday, February 9, 2017 - 3:05:23 PM
Document(s) archivé(s) le : Saturday, December 3, 2011 - 2:22:39 AM

Files

QuaternionsArticlev6revision2....
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00587958, version 2
  • ARXIV : 1104.4455

Collections

Citation

Florent Benaych-Georges, Francois Chapon. Random right eigenvalues of Gaussian quaternionic matrices. 2011. <hal-00587958v2>

Share

Metrics

Record views

224

Document downloads

44