The weak Stratonovich integral with respect to fractional Brownian motion with Hurst parameter 1/6

Abstract : Let B be a fractional Brownian motion with Hurst parameter H=1/6. It is known that the symmetric Stratonovich-style Riemann sums for $\int g(B(s))dB(s)$ do not, in general, converge in probability. We show, however, that they do converge in law in the Skorohod space of càdlàg functions. Moreover, we show that the resulting stochastic integral satisfies a change of variable formula with a correction term that is an ordinary Itô integral with respect to a Brownian motion that is independent of B.
Document type :
Journal articles
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2010
Liste complète des métadonnées

Cited literature [13 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00493981
Contributor : Ivan Nourdin <>
Submitted on : Monday, June 21, 2010 - 5:29:31 PM
Last modification on : Monday, May 29, 2017 - 2:22:17 PM
Document(s) archivé(s) le : Wednesday, September 22, 2010 - 5:51:15 PM

File

nrs-onesixth.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00493981, version 1

Collections

INSMI | PMA | UPMC | USPC

Citation

Ivan Nourdin, Anthony Réveillac, Jason Swanson. The weak Stratonovich integral with respect to fractional Brownian motion with Hurst parameter 1/6. Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2010. 〈hal-00493981〉

Share

Metrics

Record views

291

Document downloads

78