A two-time-scale phenomenon in a fragmentation-coagulation process

Abstract : Consider two urns, $A$ and $B$, where initially $A$ contains a large number $n$ of balls and $B$ is empty. At each step, with equal probability, either we pick a ball at random in $A$ and place it in $B$, or vice-versa (provided of course that $A$, or $B$, is not empty). The number of balls in $B$ after $n$ steps is of order $\sqrt n$, and this number remains essentially the same after $\sqrt n$ further steps. Observe that each ball in the urn $B$ after $n$ steps has a probability bounded away from $0$ and $1$ to be placed back in the urn $A$ after $\sqrt n$ further steps. So, even though the number of balls in $B$ does not evolve significantly between $n$ and $n+\sqrt n$, the precise contain of urn $B$ does. This elementary observation is the source of an interesting two-time-scale phenomenon which we illustrate using a simple model of fragmentation-coagulation. Inspired by Pitman's construction of coalescing random forests, we consider for every $n\in \N$ a uniform random tree with $n$ vertices, and at each step, depending on the outcome of an independent fair coin tossing, either we remove one edge chosen uniformly at random amongst the remaining edges, or we replace one edge chosen uniformly at random amongst the edges which have been removed previously. The process that records the sizes of the tree-components evolves by fragmentation and coagulation. It exhibits subaging in the sense that when it is observed after $k$ steps in the regime $k\sim tn+s\sqrt n$ with $t>0$ fixed, it seems to reach a statistical equilibrium as $n\to\infty$; but different values of $t$ yield distinct pseudo-stationary distributions.
Document type :
Preprints, Working Papers, ...
2010
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00449182
Contributor : Jean Bertoin <>
Submitted on : Friday, July 23, 2010 - 8:51:46 AM
Last modification on : Monday, May 29, 2017 - 2:24:21 PM
Document(s) archivé(s) le : Monday, October 25, 2010 - 12:11:13 PM

Files

twotimescale.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00449182, version 2
  • ARXIV : 1001.3721

Collections

INSMI | UPMC | PSL | USPC | PMA

Citation

Jean Bertoin. A two-time-scale phenomenon in a fragmentation-coagulation process. 2010. <hal-00449182v2>

Share

Metrics

Record views

149

Document downloads

44