The almost-sure population growth rate in branching Brownian motion with a quadratic breeding potential

Abstract : In this note we consider a branching Brownian motion (BBM) on $\mathbb{R}$ in which a particle at spatial position $y$ splits into two at rate $\beta y^2$, where $\beta>0$ is a constant. This is a critical breeding rate for BBM in the sense that the expected population size blows up in finite time while the population size remains finite, almost surely, for all time. We find an asymptotic for the almost sure rate of growth of the population.
Document type :
Preprints, Working Papers, ...
2009
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00440212
Contributor : Julien Berestycki <>
Submitted on : Wednesday, December 9, 2009 - 5:42:15 PM
Last modification on : Tuesday, October 11, 2016 - 2:35:20 PM

Identifiers

  • HAL Id : hal-00440212, version 1
  • ARXIV : 0912.1360

Collections

INSMI | PMA | UPMC | PSL | USPC

Citation

J. Berestycki, Eric Brunet, J. W. Harris, S. C. Harris. The almost-sure population growth rate in branching Brownian motion with a quadratic breeding potential. 2009. <hal-00440212>

Share

Metrics

Consultations de la notice

73