Homogenization of first order equations with $u/\epsilon$-periodic Hamiltonians. Part I: local equations

Abstract : In this paper, we present a result of homogenization of first order Hamilton-Jacobi equations with ($u/\varepsilon$)-periodic Hamiltonians. On the one hand, under a coercivity assumption on the Hamiltonian (and some natural regularity assumptions), we prove an ergodicity property of this equation and the existence of non periodic approximate correctors. On the other hand, the proof of the convergence of the solution, usually based on the introduction of a perturbed test function in the spirit of Evans' work, uses here a twisted perturbed test function for a higher dimensional problem.
Type de document :
Article dans une revue
Archive for Rational Mechanics and Analysis, Springer Verlag, 2008, 187, pp.49-89. 〈10.1007/s00205-007-0074-4〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00016270
Contributeur : Cyril Imbert <>
Soumis le : mardi 15 mai 2007 - 14:55:58
Dernière modification le : mercredi 25 avril 2018 - 01:22:02
Document(s) archivé(s) le : vendredi 25 novembre 2016 - 15:41:55

Fichier

homog-hjulocal-final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Cyril Imbert, Régis Monneau. Homogenization of first order equations with $u/\epsilon$-periodic Hamiltonians. Part I: local equations. Archive for Rational Mechanics and Analysis, Springer Verlag, 2008, 187, pp.49-89. 〈10.1007/s00205-007-0074-4〉. 〈hal-00016270v3〉

Partager

Métriques

Consultations de la notice

339

Téléchargements de fichiers

153