A planar defect spin sensor in a two-dimensional material susceptible to strain and electric fields - Laboratoire Charles Coulomb (L2C) Accéder directement au contenu
Article Dans Une Revue npj Computational Materials Année : 2023

A planar defect spin sensor in a two-dimensional material susceptible to strain and electric fields

Péter Udvarhelyi
Tristan Clua-Provost
  • Fonction : Auteur
Alrik Durand
  • Fonction : Auteur
Jiahan Li
  • Fonction : Auteur
James Edgar
Bernard Gil
  • Fonction : Auteur
Guillaume Cassabois
  • Fonction : Auteur
Adam Gali

Résumé

The boron-vacancy spin defect (V − B) in hexagonal boron nitride (hBN) has a great potential as a quantum sensor in a two-dimensional material that can directly probe various external perturbations in atomic-scale proximity to the quantum sensing layer. Here, we apply first principles calculations to determine the coupling of the V − B electronic spin to strain and electric fields. Our work unravels the interplay between local piezoelectric and elastic effects contributing to the final response to the electric fields. The theoretical predictions are then used to analyse optically detected magnetic resonance (ODMR) spectra recorded on hBN crystals containing different densities of V − B centres. We prove that the orthorhombic zero-field splitting parameter results from local electric fields produced by surrounding charge defects. By providing calculations of the spin-strain and spin-electric field couplings, this work paves the way towards applications of V − B centres for quantitative electric field imaging and quantum sensing under pressure.
Fichier principal
Vignette du fichier
2304.00492.pdf (2.08 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04258308 , version 1 (25-10-2023)

Identifiants

Citer

Péter Udvarhelyi, Tristan Clua-Provost, Alrik Durand, Jiahan Li, James Edgar, et al.. A planar defect spin sensor in a two-dimensional material susceptible to strain and electric fields. npj Computational Materials, 2023, 9 (1), pp.150. ⟨10.1038/s41524-023-01111-7⟩. ⟨hal-04258308⟩
27 Consultations
8 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More