PRIORS COMPARISON IN BAYESIAN MEDIATION FRAMEWORK WITH BINARY OUTCOME

Abstract : In human sciences, mediation designates a particular causal phenomenon where the effect of a variable X on another variable Y passes (par-tially or entirely) through a third variable M. The parameters of interest in mediation models are the direct effect of X on Y and the indirect effect of X on Y through M. We use a Bayesian framework to estimate these parameters and we compare different construction of prior distribution. The results show that providing information improves the quality of the estimation. We also propose a Bayesian procedure to test the absence of direct and indirect effect. Results of simulations show that this procedure works as well as the usual frequentist test for the direct effect and better than the usual bootstrapping test for the indirect effect. Finally, we apply our approach to real data from a longitudinal study on the well-being of children in school.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-02070053
Contributeur : Anne Philippe <>
Soumis le : samedi 16 mars 2019 - 15:14:18
Dernière modification le : lundi 25 mars 2019 - 16:52:06

Fichier

articleHAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02070053, version 1

Collections

Citation

Jean-Michel Galharret, Anne Philippe. PRIORS COMPARISON IN BAYESIAN MEDIATION FRAMEWORK WITH BINARY OUTCOME. 2019. ⟨hal-02070053⟩

Partager

Métriques

Consultations de la notice

14

Téléchargements de fichiers

30