Measurement of the depth-dependent local dynamics in thin polymer films through rejuvenation of ultrastable glasses - Archive ouverte HAL Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2023

Measurement of the depth-dependent local dynamics in thin polymer films through rejuvenation of ultrastable glasses

Saba Karimi
  • Fonction : Auteur
Junjie Yin
  • Fonction : Auteur
  • PersonId : 1183400
Thomas Salez
James A Forrest
  • Fonction : Auteur correspondant
  • PersonId : 1052835

Connectez-vous pour contacter l'auteur

Résumé

We measure the isothermal rejuvenation of stable glass films of poly(styrene) and poly(methylmethacrylate). We demonstrate that the propagation of the front responsible for the transformation to a supercooled-liquid state can serve as a highly localized probe of the local supercooled dynamics. We use this connection to probe the depth-dependent relaxation rate with nanometric precision for a series of polystyrene films over a range of temperatures near the bulk glass transition temperature. The analysis shows the spatial extent of enhanced surface mobility and reveals the existence of an unexpected large dynamical length scale in the system. The results are compared with the cooperative-string model for glassy dynamics. The data reveals that the film-thickness dependence of whole film properties arises only from the volume fraction of the near-surface region. While the dynamics at the middle of the samples shows the expected bulk-like temperature dependence, the near-surface region shows very little dependence on temperature.
Fichier principal
Vignette du fichier
Karimi2023.pdf (2.27 Mo) Télécharger le fichier

Dates et versions

hal-04328317 , version 1 (07-12-2023)

Identifiants

Citer

Saba Karimi, Junjie Yin, Thomas Salez, James A Forrest. Measurement of the depth-dependent local dynamics in thin polymer films through rejuvenation of ultrastable glasses. 2023. ⟨hal-04328317⟩

Collections

CNRS LOMA ANR
38 Consultations
12 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More