Breakdown of coherence in Kondo alloys: crucial role of concentration versus band filling - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Physics: Condensed Matter Année : 2019

Breakdown of coherence in Kondo alloys: crucial role of concentration versus band filling

Résumé

We study the low energy states of the Kondo alloy model (KAM) as function of the magnetic impurity concentration per site, x, and the conduction electron average site occupation, nc. In previous works, two different Fermi liquid regimes had been identified at strong Kondo coupling JK , that may be separated by a transition at x = nc. Here, we analyze the KAM for finite JK on a Bethe lattice structure. First, using the mean-field coherent potential approximation (DMFT-CPA) which is exact at lattice coordination Z = ∞, we show that the real part of the local potential scattering may be located outside the conduction electron band, revealing a possible breakdown of Luttinger theorem for intermediate values of impurity concentration x. Unusual physical signatures are expected, e.g., in ARPES experiments. In order to take into account fluctuations associated with finite dimensionality, i.e. finite Z, we extend this analysis by studying the KAM with an adaptation of the statistical-DMFT method that was developped elsewhere. We review the distributions of local potential scattering and their evolution with model parameters: concentration, strength of Kondo coupling, coordination number, local site neighborhood, connection with percolation issue. Relevence for Kondo alloys material with f-electrons is also discussed.
Fichier principal
Vignette du fichier
proofs_hal.pdf (1.13 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02407604 , version 1 (12-12-2019)

Identifiants

Citer

Sébastien Burdin, Claudine Lacroix. Breakdown of coherence in Kondo alloys: crucial role of concentration versus band filling. Journal of Physics: Condensed Matter, 2019, 31 (39), pp.395601. ⟨10.1088/1361-648X/ab2701⟩. ⟨hal-02407604⟩
35 Consultations
41 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More