Engineering Two-Phase and Three-Phase Microstructures from Water-Based Dispersions of Nanoparticles for Eco-Friendly Polymer Solar Cell Applications - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Chemistry of Materials Année : 2018

Engineering Two-Phase and Three-Phase Microstructures from Water-Based Dispersions of Nanoparticles for Eco-Friendly Polymer Solar Cell Applications

Natalie Holmes
  • Fonction : Auteur
Melissa Marks
  • Fonction : Auteur
James Cave
  • Fonction : Auteur
Krishna Feron
  • Fonction : Auteur
Matthew Barr
  • Fonction : Auteur
Adam Fahy
Xun Pan
  • Fonction : Auteur
David Kilcoyne
  • Fonction : Auteur
Xiaojing Zhou
  • Fonction : Auteur
David Lewis
Jan van Stam
  • Fonction : Auteur
Alison Walker
  • Fonction : Auteur
Ellen Moons
  • Fonction : Auteur
Warwick Belcher
  • Fonction : Auteur
Paul Dastoor
  • Fonction : Auteur

Résumé

Nanoparticle organic photovoltaics, a subfield of organic photovoltaics (OPV), has attracted increasing interest in recent years due to the eco-friendly fabrication of solar modules afforded by colloidal ink technology. Importantly, using this approach it is now possible to engineer the microstructure of the light absorbing/charge generating layer of organic photovoltaics; decoupling film morphology from film deposition. In this study, single-component nanoparticles of poly(3-hexylthiophene) (P3HT) and phenyl-C61 butyric acid methyl ester (PC61BM) were synthesized and used to generate a two-phase microstructure with control over domain size prior to film deposition. Scanning transmission X-ray microscopy (STXM) and electron microscopy were used to characterize the thin film morphology. Uniquely, the measured microstructure was a direct input for a nanoscopic kinetic Monte Carlo (KMC) model allowing us to assess exciton transport properties that are experimentally inaccessible in these singlecomponent particles. Photoluminescence, UV−vis spectroscopy measurements, and KMC results of the nanoparticle thin films enabled the calculation of an experimental exciton dissociation efficiency (ηED) of 37% for the two-phase microstructure. The glass transition temperature (Tg) of the materials was characterized with dynamic mechanical thermal analysis (DMTA) and thermal nnealing led to an increase in ηED to 64% due to an increase in donor−acceptor interfaces in the thin film from both sintering of neighboring opposite-type particles in addition to the generation of a third mixed phase from diffusion of PC61BM into amorphous P3HT domains. As such, this study demonstrates the higher level of control over donor−acceptor film morphology enabled by customizing nanoparticulate colloidal inks, where the optimal three-phase film morphology for an OPV photoactive layer can be designed and engineered.
Fichier non déposé

Dates et versions

hal-01940601 , version 1 (30-11-2018)

Identifiants

  • HAL Id : hal-01940601 , version 1

Citer

Natalie Holmes, Melissa Marks, James Cave, Krishna Feron, Matthew Barr, et al.. Engineering Two-Phase and Three-Phase Microstructures from Water-Based Dispersions of Nanoparticles for Eco-Friendly Polymer Solar Cell Applications. Chemistry of Materials, 2018, 30 (18), pp.6521-6531. ⟨hal-01940601⟩

Collections

CNRS INC-CNRS LCPO
35 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More