Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Light: Science and Applications Année : 2018

Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films

Résumé

In this work, we demonstrate that ultraviolet (UV) laser photolysis of hydrocarbon species alters the flame chemistry such that it promotes the diamond growth rate and film quality. Optical emission spectroscopy and laser-induced fluorescence demonstrate that direct UV laser irradiation of a diamond-forming combustion flame produces a large amount of reactive species that play critical roles in diamond growth, thereby leading to enhanced diamond growth. The diamond growth rate is more than doubled, and diamond quality is improved by 4.2%. Investigation of the diamond nucleation process suggests that the diamond nucleation time is significantly shortened and nondiamond carbon accumulation is greatly suppressed with UV laser irradiation of the combustion flame in a laser-parallel-to-substrate geometry. A narrow amorphous carbon transition zone, averaging 4 nm in thickness, is identified at the film–substrate interface area using transmission electron microscopy, confirming the suppression effect of UV laser irradiation on nondiamond carbon formation. The discovery of the advantages of UV photochemistry in diamond growth is of great significance for vastly improving the synthesis of a broad range of technically important materials.

Domaines

Matériaux
Fichier principal
Vignette du fichier
2018-083.pdf (3.47 Mo) Télécharger le fichier
Origine : Publication financée par une institution

Dates et versions

hal-01798354 , version 1 (26-01-2021)

Identifiants

Citer

Li-Sha Li, Loic Constantin, Da-Wei Li, Lei Liu, Kamran Keramatnejad, et al.. Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films. Light: Science and Applications, 2018, 7, 17177 (9 p.). ⟨10.1038/lsa.2017.177⟩. ⟨hal-01798354⟩
28 Consultations
16 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More