HD141569A: disk dissipation caught in action - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2014

HD141569A: disk dissipation caught in action

Résumé

Debris disks are usually thought to be gas-poor, the gas being dissipated by accretion or evaporation during the proto-planetary phases. HD141569 is a 5 Myr old star harbouring a famous debris disk, with multiple rings and spiral features in particular imaged in scattered light. The dust observations also reveal a central cavity of ~130 AU. Despite the apparently evolved status of the disk, large quantities of CO have been detected. Near-infrared observations of gas have revealed that the dust cavity is not devoid of gas, and by consequence that the gas and dust are not co-located. I present here Plateau de Bure Interferometer observations mapping the 12CO(2-1) gas in HD141569 disk. We used the DISKFIT code to analyze the data and model them by fitting power-laws. It confirms that dust and gas are not co-located everywhere in the disk with the gas inner radius inferior to 60 AU and its outer radius being smaller than the dust one. In terms of modeling, the results indicate the gas is still optically thick and more massive than expected for a debris disk. This study tends to show that HD141569 is an hybrid disk with a primordial gas component and secondary-made dust created by planetesimal collisions, and then is an interesting target to better understand the transition between early and evolved phases of the disks which give birth to planetary systems.
Fichier non déposé

Dates et versions

hal-01110458 , version 1 (28-01-2015)

Identifiants

Citer

J. Pericaud, E. Di Folco, Anne Dutrey, J.-C., Augereau, V., Piétu, et al.. HD141569A: disk dissipation caught in action. Proceedings of the conference Thirty years of beta Pic and debris disks studies. Held at Institut d'Astrophysique de Paris - France, on September 8 - 12, 2014. Edited by Anne-Marie Lagrange & Anthony Boccaletti., Sep 2014, Paris, France. ⟨hal-01110458⟩
252 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More