Magnet Shape Optimization to Reduce Pulsating Torque for a Five-Phase Permanent-Magnet Low-Speed Machine - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue IEEE Transactions on Magnetics Année : 2014

Magnet Shape Optimization to Reduce Pulsating Torque for a Five-Phase Permanent-Magnet Low-Speed Machine

Résumé

Five-phase Surface-Mounted Permanent Magnet (SMPM) machines can inherently produce a smooth electromagnetic torque which can be increased when using third harmonic current injection. To really take advantage of these characteristics, the rotor magnets can be shaped in order to obtain a back-emf with large third harmonic term. This is the scope of the paper. For the design specifications of a low speed marine propulsion machine, the following objective must be achieved: to significantly mitigate the pulsating torque without reducing the average torque bearing in mind the solution where the rotor is made with full pole-pitch magnets. An analytical field computation, called equivalent coil method, is developed in order to quicly explore the magnet geometries. Thus a procedure to optimize small trapezoid notches at the surface of the pole magnets is performed. Referring to the classical fully pole-pitch magnet shape, the solution found allows a substantial reduction of the pulsating torque without reducing the torque density. Furthermore, with regard to an equivalent three-phase machine, for the same copper losses, the average torque of the optimized five-phase machine can be potentially higher if the third harmonic current injection is implemented.
Fichier principal
Vignette du fichier
IRENAV_MAGNETICS_Scuiller_2014.pdf (1.16 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01060089 , version 1 (02-09-2014)

Identifiants

Citer

Franck Scuiller. Magnet Shape Optimization to Reduce Pulsating Torque for a Five-Phase Permanent-Magnet Low-Speed Machine. IEEE Transactions on Magnetics, 2014, 50 (4), pp.1-9. ⟨10.1109/TMAG.2013.2287855⟩. ⟨hal-01060089⟩
60 Consultations
778 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More