Comparative analysis of CAX2-like cation transporters indicates functional and regulatory diversity - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Biochemical Journal Année : 2009

Comparative analysis of CAX2-like cation transporters indicates functional and regulatory diversity

Clare Edmond
  • Fonction : Auteur
Toshiro Shigaki
  • Fonction : Auteur
Sophie Ewert
  • Fonction : Auteur
Matthew D Nelson
  • Fonction : Auteur
James M Connorton
  • Fonction : Auteur
Vesela Chalova
  • Fonction : Auteur
Zeenat Noordally
  • Fonction : Auteur

Résumé

Internal compartmentalisation of metals is an important metal tolerance mechanism in many organisms. In plants and fungi, sequestration into the vacuole is a major detoxification mechanism for metals. Cation transport into the vacuole can be mediated by cation/H+ exchanger (CAX) transporters. The Arabidopsis thaliana AtCAX2 transporter was previously shown to transport Ca2+, Cd2+ and Mn2+. To assess the conservation of functional and regulatory characteristics of CAX2-like transporters in higher plants, we have characterized AtCAX2 orthologues from Arabidopsis (AtCAX5), tomato (LeCAX2) and barley (HvCAX2). Substrate specificity and regulatory activity was assessed using a yeast heterologous expression assay. Each CAX could transport Ca2+ and Mn2+ into the yeast vacuole but they each had different cation transport kinetics. Most notably there was variation in the regulation of the transporters. As previously found with AtCAX2, only expression of an N-terminally truncated AtCAX5 in yeast was able to mediate Ca2+ and Mn2+ transport indicating that activity may be controlled by an auto-regulatory region at the N-terminus. In contrast either full-length or truncated LeCAX2 could efficiently transport Ca2+, although Mn2+ transport was controlled by the N-terminus. HvCAX2 did not appear to possess an N-terminal regulatory domain. Expression of AtCAX2 was not significantly modulated by metal stress; however, AtCAX5 and HvCAX2 were transcriptionally up-regulated by high Mn2+ treatment, and by Ca2+ and Na+ stress, respectively. It is therefore apparent that despite the high sequence identity between plant CAX2 orthologues there is significant diversity in their functional characteristics, particularly with regard to regulatory mechanisms.

Mots clés

Fichier principal
Vignette du fichier
PEER_stage2_10.1042%2FBJ20081814.pdf (1.21 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00479096 , version 1 (30-04-2010)

Identifiants

Citer

Clare Edmond, Toshiro Shigaki, Sophie Ewert, Matthew D Nelson, James M Connorton, et al.. Comparative analysis of CAX2-like cation transporters indicates functional and regulatory diversity. Biochemical Journal, 2009, 418 (1), pp.145-154. ⟨10.1042/BJ20081814⟩. ⟨hal-00479096⟩

Collections

PEER
145 Consultations
202 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More