V. P. Edgcomb and J. Biddle, Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment, Proc Natl Acad Sci, 2002.

V. P. Edgcomb, D. Beaudoin, R. Gast, J. F. Biddle, and A. Teske, Marine subsurface eukaryotes: the fungal majority, Environ Microbiol, vol.13, pp.172-183, 2011.
DOI : 10.1111/j.1462-2920.2010.02318.x

C. C. Fasanella, A. Dias, J. Rigonato, F. Mf, and . Others, The selection exerted by oil contamination on mangrove fungal communities, Water Air Soil Pollut, vol.223, pp.4233-4243, 2012.
DOI : 10.1007/s11270-012-1187-4

P. Fernandes, T. Domitrovic, C. M. Kao, and E. Kurtenbach, Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure, FEBS Lett, vol.556, pp.153-160, 2004.
DOI : 10.1016/s0014-5793(03)01396-6

URL : https://febs.onlinelibrary.wiley.com/doi/pdf/10.1016/S0014-5793%2803%2901396-6

J. Flowers, J. Hartman, and L. Vaillancourt, Detection of latent Sphaeropsis sapinea infections in Austrian pine tissues using nested-polymerase chain reaction, Phytopathology, vol.93, pp.1471-1477, 2003.

M. Gadanho and J. P. Sampaio, Occurrence and diversity of yeasts in the Mid-Atlantic Ridge hydrothermal fields near the Azores Archipelago, Microb Ecol, vol.50, pp.408-417, 2005.

G. M. Gadd, Geomycology: biogeochemical transformations of rocks, minerals and radionuclides by fungi, bioweathering and bioremediation, Mycol Res, vol.111, pp.3-49, 2007.
DOI : 10.1016/j.mycres.2006.12.001

Y. Gao, J. T. Zhao, Y. G. Zu, Y. J. Fu, W. Wang et al., Characterization of five fungal endophytes producing Cajaninstilbene acid isolated from pigeon pea, PLoS ONE, vol.6, p.27589, 2011.
DOI : 10.1371/journal.pone.0027589

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0027589&type=printable

R. Gazis and P. Chaverri, Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru, Fungal Ecol, vol.3, pp.240-254, 2010.

V. N. Gonçalves, A. B. Vaz, C. A. Rosa, and L. H. Rosa, Diversity and distribution of fungal communities in lakes of Antarctica, FEMS Microbiol Ecol, vol.82, pp.459-471, 2012.

M. Gorfer, M. Blumhoff, S. Klaubauf, and U. A. Others, Community profiling and gene expression of fungal assimilatory nitrate reductases in agricultural soil, ISME J, vol.5, pp.1771-1783, 2011.

L. M. Grubisic, A. Brutemark, G. A. Weyhenmeyer, J. Wikner, U. Båmstedt et al., Effects of stratification depth and dissolved organic matter on brackish bacterioplankton communities, Mar Ecol Prog Ser, vol.453, pp.37-48, 2012.
DOI : 10.3354/meps09634

URL : https://www.int-res.com/articles/meps_oa/m453p037.pdf

M. H. Gutiérrez, S. Pantoja, E. Tejoset, and R. A. Quinones, The role of fungi in processing marine organic matter in the upwelling ecosystem off Chile, Mar Biol, vol.158, pp.205-219, 2011.

D. L. Hawksworth, Mycology: a neglected megascience, pp.1-16, 2009.
DOI : 10.1079/9781845935344.0001

C. House, B. Cragg, and A. Teske, Drilling contamination tests on ODP leg 201 using chemical and particulate tracers, Proceedings of the Ocean Drilling Program, 2003.
DOI : 10.2973/odp.proc.ir.201.102.2003

C. S. Jebaraj, C. Raghukumar, A. Behnke, and T. Stoeck, Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation, FEMS Microbiol Ecol, vol.71, pp.399-412, 2010.

A. Jumpponen and K. L. Jones, Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere, New Phytol, vol.184, pp.438-448, 2009.
DOI : 10.1111/j.1469-8137.2009.02990.x

J. Kallmeyer, D. C. Smith, A. J. Spivack, D. Hondt, and S. , New cell extraction procedure applied to deep subsurface sediments, Limnol Oceanogr Methods, vol.6, pp.236-245, 2008.
DOI : 10.4319/lom.2008.6.236

URL : https://aslopubs.onlinelibrary.wiley.com/doi/pdf/10.4319/lom.2008.6.236

J. Kallmeyer, R. Pockalny, D. Hondt, and S. , Quantifying global subseafloor microbial abundance: method and implications, Goldschmidt Conference Abstracts, p.615, 2009.

J. Kallmeyer, R. Pockalny, R. R. Adhikari, D. C. Smith, D. Hondt et al., Global distribution of microbial abundance and biomass in subseafloor sediment, Proc Natl Acad Sci, vol.109, pp.16213-16216, 2012.

A. Stolk, Emericellopsis minima sp. nov. and Westerdykella ornate gen. nov., sp. nov, Trans Br Mycol Soc, vol.38, pp.419-424, 1955.
DOI : 10.1016/s0007-1536(55)80046-0

K. Takishita, M. Tsuchiya, J. D. Reimer, and T. Maruyama, Molecular evidence demonstrating the basidiomycetous fungus Cryptococcus curvatus is the dominant microbial eukaryote in sediment at the Kuroshima Knoll methane seep, Extremophiles, vol.10, pp.165-169, 2006.

J. D. Thompson, D. G. Higgins, and T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res, vol.22, pp.4673-4680, 1994.
DOI : 10.1093/nar/22.22.4673

URL : http://europepmc.org/articles/pmc308517?pdf=render

W. Baaj, D. Kondo, and N. , Genotyping Cephalosporium gramineum and development of a marker for molecular diagnosis, Plant Pathol, vol.60, pp.730-738, 2011.

Q. M. Wang, T. Boekhout, and F. Y. Bai, Cryptococcus foliicola sp. nov. and Cryptococcus taibaiensis sp. nov., novel basidiomycetous yeast species from plant leaves, J Gen Appl Microbiol, vol.57, pp.285-291, 2011.

T. J. White, T. Bruns, S. Lee, and J. Taylor, Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, PCR protocols: a guide to methods and applications, pp.315-322, 1990.
DOI : 10.1016/b978-0-12-372180-8.50042-1

S. Wirsel, W. Leibinger, M. Ernst, and K. Mendgen, Genetic diversity of fungi closely associated with common reed, New Phytol, vol.149, pp.589-598, 2001.
DOI : 10.1046/j.1469-8137.2001.00038.x

URL : https://nph.onlinelibrary.wiley.com/doi/pdf/10.1046/j.1469-8137.2001.00038.x

S. A. Yarwood, P. J. Bottomley, and D. D. Myrold, Soil microbial communities associated with Douglas-fir and red alder stands at high-and low-productivity forest sites in Oregon, USA. Microb Ecol, vol.60, pp.606-617, 2010.
DOI : 10.1007/s00248-010-9675-9

E. Yokoyama, M. Arakawa, K. Yamagishi, and A. Hara, Phylogenetic and structural analyses of the mating-type loci in Clavicipitaceae, FEMS Microbiol Lett, vol.264, pp.182-191, 2006.

R. Zare, W. Gams, M. Starink-willemse, and R. C. Summerbell, Gibellulopsis, a suitable genus for Verticillium nigrescens, and Musicillium, a new genus for V. theobromae, Nova Hedwigia, vol.85, pp.463-489, 2007.
DOI : 10.1127/0029-5035/2007/0085-0463

A. Zuccaro, C. L. Schoch, J. W. Spatafora, J. Kohlmeyer, S. Draeger et al., Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus, Appl Environ Microbiol, vol.74, pp.931-941, 2008.

F. K. S-k-?, Sb 2 S 3 (Sb L ? ), ZnS (Zn K ? ), HgS (Hg L ? ), Ag metal (Ag L ? ) and GaAs (As L ? ). The unit-cell parameters of selected realgar single crystals [three from Conical Seamount (#SO-133 25GTVA-7) and two from JADE hydrothermal field (#SO-56 159DSE)] were obtained by means of an Oxford Diffraction Excalibur III X-ray single-crystal diffractometer using graphite-monochromatized MoK ? radiation, Standards used were: FeS

. Burgaud, CuK ? radiation) with a 165-mm diagonal Onyx charge-coupled device detector at 2.5:1 demagnification. The program Crysalis RED (Oxford Diffraction, 2006) was used to convert the observed diffraction rings into a conventional X-ray diffraction (XRD) pattern. Eh-pH diagrams of As-S phases were produced using the Geochemist's Workbench 8.0 software and the "thermo_minteq" database. Physical and chemical parameters used in our calculations are discussed in Section 5. In order to avoid introduction of exogenous contaminants in the molecular analyses of the filamentous orpiment sample (#MN-DR-1-11) it was sub-sampled with stainless tweezers in sterile Eppendorff® tubes, not touched with ungloved hands. We processed DNA extraction and purification from 2 × 0.5 g of inert filamentous orpiment (#MN-DR-1-11) using MoBio PowerSoil DNA isolation and purification kits following manufacturer's instructions. Negative DNA extraction control was processed. Concentration of extracted DNA was measured with a NanoDrop 1000 Spectrophotometer (Thermo Scientific) and nested-PCR assays were performed to amplify ITS1 region of fungal rRNA using ITS1F, ITS4 and ITS2 primers as described elsewhere, Kaia Natai Seamount) did not diffract as a single crystal (we observed only diffraction rings and no diffraction spots) and the amount of available material was scarce, powder diffraction data were collected using an Oxford Diffraction Excalibur PX Ultra single-crystal diffractometer, 2013.

, We also stained thin sections of filamentous orpiment on slides with Calcofluor White M2R {4,4?-bis[4-anilino-6-bis(2-ethyl)amino-s-triazin-2-ylamino]-2, 2?-disulfonic acid}. The targets of calcofluor white M2R are chitin, cellulose, and carboxylated polysaccharides. Following incubation in the dark for 5 min of filamentous orpiment and positive control (fixed fungal cells), slides were washed with sterile water and observed using epifluorescence microscopy, Transformants were selected on Luria-Bertani (LB) agar plates containing ampicillin (100 ?g/mL)

, Red euhedral crystals precipitated at the seafloor (samples #SO-133 25GTVA-7 and #SO-56 159DSE) and sub-seafloor [sample #SO-166 43RD (0-5 cm)] appeared to be realgar (XRD and EMP data): As 4 S 4 . Realgar forms prismatic crystals scattered in a matrix of colloform and filamentous X-ray amorphous silica (SiO 2am. ) (Fig. 2A, C), barite and stibnite. Its diffraction peaks at the XRD patterns (not presented) were sharp and strong. Realgar unit-cell and Nowacki, Results The collected As-sulfides show three different morphologies: euhedral crystals (Fig. 2A), colloform aggregates (Fig. 2B) and dense networks of filaments (Fig. 3), 1972.

, As 2 S 3 ; Fig. 2B) forms colloform aggregates in the voids of the host rocks at and beneath the seafloor [samples #SO-133 25GTVA-7, #SO-166 43RD (0-5 cm) and #SO-56 159DSE]. In cross-section it shows concentric zonation (Figs 2D; 4A, B). It is often coated by a thin film of sphalerite (Fig. 4B, C). This orpiment has traces of Zn, Grayish-yellow to orange-yellow orpiment

A. O. Adeyemi, Bioaccumulation of arsenic in fungi, American Journal of Environmental Sciences, vol.5, pp.364-370, 2009.
DOI : 10.3844/ajessp.2009.364.370

URL : http://thescipub.com/pdf/10.3844/ajessp.2009.364.370

J. M. Auzende, J. Ishibashi, Y. Beaudoin, J. L. Charlou, J. Delteil et al., Rift propagation and extensive off-axis volcanic and hydrothermal activity in the Manus Basin, MANAUTE Cruise. InterRidge News, vol.9, pp.21-25, 2000.

J. Biddle, J. R. White, A. P. Teske, and C. H. House, Metagenomics of the subsurface Brazos-Trinity Basin (IODP site 1320): comparison with other sediment and pyrosequenced metagenomes, The ISME Journal, vol.5, pp.1038-1047, 2011.

R. A. Binns and S. D. Scott, Actively forming polymetallic sulfide deposits associated with felsic volcanic-rocks in the Eastern Manus Back-Arc Basin, Economic Geology, vol.88, pp.2226-2236, 1993.
DOI : 10.2113/gsecongeo.88.8.2226

M. D. Brasier, J. B. Antcliffe, and R. H. Callow, Evolutionary trends in remarkable fossil preservation across the Ediacaran-Cambrian transition and the impact of metazoan mixing, Taphonomy: Process and Bias Through Time, vol.32, pp.519-567, 2011.

C. Breuer and T. Pichler, Arsenic in marine hydrothermal fluids, Chemical Geology, vol.348, pp.2-14, 2013.

G. Burgaud, S. Woehlke, V. Rédou, W. Orsi, D. Beaudoin et al., Deciphering presence and activity of fungal communities in marine sediments using a model estuarine system, Aquatic Microbial Ecology, 2013.

P. C. Burns and J. B. Percival, Alacranite, As4S4: a new occurrence, new formula, and determination of the crystal structure, The Canadian Mineralogist, vol.39, pp.809-818, 2001.

Y. Cai, J. D. Schiffbauer, H. Hua, and S. Xiao, Preservational modes in the Ediacaran Gaojiashan Lagerstätte: pyritization, aluminosilicification, and carbonaceous compression, Palaeogeography, Palaeoclimatology, Palaeoecology, vol.326, pp.109-117, 2012.

C. Canet, R. M. Prol-ledesma, J. A. Proenza, M. A. Rubio-ramos, M. J. Forrest et al., Mn-Ba-Hg mineralization at shallow submarine hydrothermal vents in Bahía Concepción, Chemical Geology, vol.224, pp.96-112, 2005.

D. Canovas, Y. Mukhopadhyay, B. P. Rosen, and V. De-lorenzo, Arsenate transport and reduction in the hyper-tolerant fungus Aspergillus sp, P37. Environmental Microbiology, vol.5, pp.1087-1093, 2003.

S. Cernansky, M. Urík, J. ?evc, and E. Hiller, Biosorption of arsenic and cadmium from aqueous solutions, African Journal of Biotechnology, vol.6, pp.1932-1934, 2007.

P. J. Coleman and L. W. Kroenke, Subduction without volcanism in the Solomon Island arc, Geo-Marine Letters, vol.1, pp.129-134, 1981.

P. R. Craddock, W. Bach, J. S. Seewald, O. J. Rouxel, E. Reeves et al., Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: indicators of sub-seafloor hydrothermal processes in back-arc basins, Geochimica et Cosmochimica Acta, vol.74, pp.5494-5513, 2010.

N. Das, R. Vimala, and P. Karthika, Biosorption of heavy metals -an overview, Indian Journal of Biotechnology, vol.7, pp.159-169, 2008.

C. S. Demergasso, C. D. Guillermo, E. G. Lorena, J. J. Pueyo-mur, and C. Pedrós-alió, Microbial precipitation of arsenic sulfides in Andean salt flats, Geomicrobiology Journal, vol.24, pp.111-123, 2007.

E. Douville, J. Charlou, J. Donval, D. Hureau, and P. Appriou, As and Sb behaviour in fluids from various deep-sea hydrothermal systems, Comptes rendus de l'Académie des Sciences. Série 2. Sciences de la Terre et des Planètes, vol.328, pp.97-104, 1999.

V. P. Edgcomb, D. Beaudouin, R. Gast, J. F. Biddle, and A. Teske, Marine subsurface eukaryotes: the fungal majority, Environmental Microbiology, vol.13, pp.172-183, 2011.

Y. Fouquet, U. Von-stackelberg, J. L. Charlou, J. Erzinger, P. M. Herzig et al., Metallogenesis in back-arc environments: the Lau Basin example, Economic Geology, vol.88, pp.2150-2177, 1993.

Y. Fouquet, P. Cambon, J. Etoubleau, J. L. Charlou, H. Ondréas et al., Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit, Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Geophysical Monograph, vol.188, pp.321-367, 2010.

K. Francesconi and J. Edmonds, Arsenic species in marine samples, Croatica Chemica Acta, vol.71, pp.343-359, 1998.

T. Gamo, K. Okamura, J. Charlou, T. Urabe, J. Auzende et al., Acidic and sulfate-rich hydrothermal fluids from the Manus back-arc basin, Geology, vol.25, pp.139-142, 1997.

C. R. German and K. L. Von-damm, The Oceans and Marine Geochemistry, Treatise on Geochemistry, vol.6, pp.181-222, 2006.

P. Halbach, B. Pracejus, and A. Marten, Geology and mineralogy of massive sulfide ores from the central Okinawa Trough, Japan. Economic Geology, vol.88, pp.2210-2225, 1993.