How to Train Your Robot - New Environments for Robotic Training and New Methods for Transferring Policies from the Simulator to the Real Robot

Florian Golemo 1, 2
2 Flowers - Flowing Epigenetic Robots and Systems
Inria Bordeaux - Sud-Ouest, U2IS - Unité d'Informatique et d'Ingénierie des Systèmes
Abstract : Robots are the future. But how can we teach them useful new skills? This work covers a variety of topics, all with the common goal of making it easier to train robots. The first main component of this thesis is our work on model-building sim2real transfer. When a policy has been learned entirely in simulation, the performance of this policy is usually drastically lower on the real robot. This can be due to random noise, to imprecisions, or to unmodelled effects like backlash. We introduce a new technique for learning the discrepancy between the simulator and the real robot and using this discrepancy to correct the simulator. We found that for several of our ideas there weren’t any suitable simulations available. Therefore, for the second main part of the thesis, we created a set of new robotic simulation and test environments. We provide (1) several new robot simulations for existing robots and variations on existing environments that allow for rapid adjustment of the robot dynamics. We also co-created (2) the Duckietown AIDO challenge, which is a large scale live robotics competition for the conferences NIPS 2018 and ICRA 2019. For this challenge we created the simulation infrastructure, which allows participants to train their robots in simulation with or without ROS. It also lets them evaluate their submissions automatically on live robots in a ”Robotarium”. In order to evaluate a robot’s understanding and continuous acquisition of language, we developed the (3) Multimodal Human-Robot Interaction benchmark (MHRI). This test set contains several hours of annotated recordings of different humans showing and pointing at common household items, all from a robot’s perspective. The novelty and difficulty in this task stems from the realistic noise that is included in the dataset: Most humans were non-native English speakers, some objects were occluded and none of the humans were given any detailed instructions on how to communicate with the robot, resulting in very natural interactions. After completing this benchmark, we realized the lack of simulation environments that are sufficiently complex to train a robot for this task. This would require an agent in a realistic house settings with semantic annotations. That is why we created (4) HoME, a platform for training household robots to understand language. The environment was created by wrapping the existing SUNCG 3D database of houses in a game engine to allow simulated agents to traverse the houses. It integrates a highly-detailed acoustic engine and a semantic engine that can generate object descriptions in relation to other objects, furniture, and rooms. The third and final main contribution of this work considered that a robot might find itself in a novel environment which wasn’t covered by the simulation. For such a case we provide a new approach that allows the agent to reconstruct a 3D scene from 2D images by learning object embeddings, since especially in low-cost robots a depth sensor is not always available, but 2D cameras a common. The main drawback of this work is that it currently doesn’t reliably support reconstruction of color or texture. We tested the approach on a mental rotation task, which is common in IQ tests, and found that our model performs significantly better in recognizing and rotating objects than several baselines.
Complete list of metadatas

Cited literature [155 references]  Display  Hide  Download
Contributor : Florian Golemo <>
Submitted on : Tuesday, January 8, 2019 - 4:21:00 PM
Last modification on : Wednesday, July 3, 2019 - 10:48:04 AM


Files produced by the author(s)


  • HAL Id : tel-01974203, version 1


Florian Golemo. How to Train Your Robot - New Environments for Robotic Training and New Methods for Transferring Policies from the Simulator to the Real Robot. Artificial Intelligence [cs.AI]. Université de Bordeaux, 2018. English. ⟨tel-01974203⟩



Record views


Files downloads