E. B. Wilson, Cell In Development And Heredity, 3rd. Rev, 1925.

C. R. Noback, N. L. Strominger, R. J. Demarest, and D. A. Ruggiero, The human nervous system: structure and function, 2005.

D. G. Moerman and A. Fire, 16 Muscle: Structure, Function, and Development. Cold Spring Harbor Monograph Archive, pp.417-470, 1997.

G. R. Skuse, M. C. Ferran, and C. , , 2015.

S. I. Fox, Human Physiology 9th Editon 6. https:// www.dreamstime.com/royalty-free-stock-photos-human-body-cells-image25 962548 The plasma membrane. The Biochemistry of Plants, A Comprehensive Treatise, vol.1, pp.163-182, 2006.

S. Standring, Gray's anatomy: the anatomical basis of clinical practice, 2015.

J. M. Fernandez and J. P. Hoeffler, Gene expression systems: using nature for the art of expression, 1998.

R. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts et al., The cytoskeleton: imaging, isolation, and interaction 12. http:// schoolbag.info/biology/living/31.html. 13 Molecular biology of the cell. new york: Garland science, Classic textbook now in its 5th Edition, 2002.

G. Karp, N. L. Pruitt, T. Fair, P. Hyttel, J. Motlik et al., 15 The cell nucleus Maintenance of meiotic arrest in bovine oocytes in vitro using butyrolactone I: effects on oocyte ultrastructure and nucleolus function. Molecular reproduction and development 62 The nuclear matrix: a structural milieu for genomic function, International review of cytology, vol.3, issue.162, pp.375-386, 1996.

E. Therman and M. Susman, Human chromosomes: structure, behavior, and effects, 2012.

R. I. Chizhik and . Zhdanov, Atomic force microscopy probing of cell elasticity, Micron, vol.38, pp.824-833, 2007.

K. Tomankova, P. Kolar, J. Malohlava, and H. Kolarova, Mechanical characterisation of HeLa cells using atomic force microscopy. Current microscopy contributions to advances in science and technology 1, pp.549-554, 2012.

G. R. Fedorchak, A. Kaminski, and J. Lammerding, Cellular mechanosensing: Getting to the nucleus of it all, Progress in biophysics and molecular biology, pp.76-92, 2014.
DOI : 10.1016/j.pbiomolbio.2014.06.009

URL : http://europepmc.org/articles/pmc4252489?pdf=render

J. Swift, I. L. Ivanovska, A. Buxboim, T. Harada, P. D. Dingal et al.,

J. D. Pinter, K. R. Pajerowski, J. Spinler, M. Shin, and . Tewari, Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation Broken nuclei?lamins, nuclear mechanics, and disease, Science, vol.341, issue.24, pp.1240104-247, 2013.

C. Y. Ho, D. E. Jaalouk, M. K. Vartiainen, and J. Lammerding, Lamin A/C and emerin regulate MKL1???SRF activity by modulating actin dynamics, Nature, vol.172, issue.7450, pp.507-511, 2013.
DOI : 10.1083/jcb.200507101

P. D. Dingal, A. M. Bradshaw, S. Cho, M. Raab, A. Buxboim et al., Fractal heterogeneity in minimal matrix models of scars modulates stiff-niche stem-cell responses via nuclear exit of a mechanorepressor, Nature Materials, vol.14, issue.9, pp.951-960, 2015.
DOI : 10.1021/la9713006

J. D. Pajerowski, K. N. Dahl, F. L. Zhong, P. J. Sammak, and D. E. Discher, Physical plasticity of the nucleus in stem cell differentiation, Proceedings of the National Academy of Sciences, vol.117, issue.10, pp.15619-15624, 2007.
DOI : 10.1242/jcs.01073

E. D. Hay, Cell biology of extracellular matrix, 2013.

F. Travascio, Composition and Function of the Extracellular Matrix in the Human Body, 2016.
DOI : 10.5772/61601

A. D. Cardin and H. Weintraub, Molecular modeling of protein-glycosaminoglycan interactions, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.9, issue.1, pp.21-32, 1989.
DOI : 10.1161/01.ATV.9.1.21

E. Ruoslahti and Y. Yamaguchi, Proteoglycans as modulators of growth factor activities, Extracellular matrix assembly and structure, pp.867-869, 1991.
DOI : 10.1016/0092-8674(91)90308-L

H. Lodish and S. L. Zipursky, Molecular cell biology, Biochemistry and Molecular Biology Education, vol.29, pp.126-133, 2001.

P. , Collagen: structure and mechanics, 2008.
DOI : 10.1007/978-0-387-73906-9

H. Lee, J. Rho, and P. B. Messersmith, Facile Conjugation of Biomolecules onto Surfaces via Mussel Adhesive Protein Inspired Coatings, Advanced Materials, vol.8, issue.4, pp.431-434, 2009.
DOI : 10.1002/adma.200801222

R. O. Hynes, Integrins: Versatility, modulation, and signaling in cell adhesion, Cell, vol.69, issue.1, pp.11-25, 1992.
DOI : 10.1016/0092-8674(92)90115-S

M. Jahangiri, F. Mayr-hansen, D. Genovese, and M. Leeming, 39 The importance of extracellular matrix for cell function and in vivo likeness Experimental and molecular pathology 98 40. http:// csls-text.c.u-tokyo.ac.jp/active/11_01.html. 41 Promotion of cell adherence and spreading: a novel function of RAGE, the highly selective differentiation marker of human alveolar epithelial type I cells Molecular properties in cell adhesion: a physical and engineering perspective, Molecular & Cellular Proteomics J. Behrens, W. J. Nelson, Cell adhesion. Cell and tissue research Trends in biotechnology, vol.10, issue.19, pp.8128-286, 2001.

L. Liaw, M. Almeida, C. E. Hart, S. M. Schwartz, and C. M. Giachelli, Osteopontin promotes vascular cell adhesion and spreading and is chemotactic for smooth muscle cells in vitro, Circulation Research, vol.74, issue.2, pp.214-224, 1994.
DOI : 10.1161/01.RES.74.2.214

URL : http://circres.ahajournals.org/content/74/2/214.full.pdf

J. S. Damiano, A. E. Cress, L. A. Hazlehurst, A. A. Shtil, and W. S. Dalton, Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines, Blood, vol.93, pp.1658-1667, 1999.

G. S. Ashcroft, M. A. Horan, and M. Ferguson, Aging alters the inflammatory and endothelial cell adhesion molecule profiles during human cutaneous wound healing Laboratory investigation 47. S. Albelda, Role of integrins and other cell adhesion molecules in tumor progression and metastasis investigation, Laboratory, vol.78, issue.68, pp.47-58, 1993.

E. Sackmann, How cells feel the force, Nature Physics, vol.8, issue.6, pp.407-408, 2010.
DOI : 10.1038/nphys1677

I. B. Bischofs and U. S. Schwarz, Cell organization in soft media due to active mechanosensing, Proceedings of the National Academy of Sciences, vol.290, issue.5495, pp.9274-9279, 2003.
DOI : 10.1126/science.290.5495.1328

URL : http://www.pnas.org/content/100/16/9274.full.pdf

S. Glasstone, H. Eyring, and K. J. Laidler, The theory of rate processes, 1941.

B. J. Dubin-thaler, G. Giannone, H. Döbereiner, and M. P. Sheetz, Nanometer Analysis of Cell Spreading on Matrix-Coated Surfaces Reveals Two Distinct Cell States and STEPs, Cellular and biomolecular mechanics and mechanobiology, pp.1794-1806, 2004.
DOI : 10.1016/S0006-3495(04)74246-0

URL : https://doi.org/10.1016/s0006-3495(04)74246-0

D. Mercier and . Chappard, Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces, Calcified tissue international, vol.64, pp.499-507, 1999.

J. Li, D. Han, and Y. Zhao, Kinetic behaviour of the cells touching substrate: the interfacial stiffness guides cell spreading, Scientific Reports, vol.47, issue.1, p.3910, 2014.
DOI : 10.1016/j.cub.2007.02.058

J. Wang, W. Liu, Q. Tu, C. Ma, L. Zhao et al., High throughput and multiplex localization of proteins and cells for in situ micropatterning using pneumatic microfluidics, 56. S. M. Albelda, C. A. Buck, Integrins and other cell adhesion molecules, pp.827-836, 1990.
DOI : 10.1007/s00216-008-2379-z

R. J. Linnola, L. Werner, S. K. Pandey, M. Escobar-gomez, S. L. Znoiko et al., Adhesion of fibronectin, vitronectin, laminin, and collagen type IV to intraocular lens materials in pseudophakic human autopsy eyes, Journal of Cataract & Refractive Surgery, vol.26, issue.12, pp.1807-1818, 2000.
DOI : 10.1016/S0886-3350(00)00747-1

M. Versaevel, T. Grevesse, and S. Gabriele, Spatial coordination between cell and nuclear shape within micropatterned endothelial cells, Nature Communications, vol.18, issue.1, p.671, 2012.
DOI : 10.1080/07391102.2001.10506686

URL : http://www.nature.com/articles/ncomms1668.pdf

J. Fu, Y. K. Wang, M. T. Yang, R. A. Desai, X. Yu et al., Mechanical regulation of cell function with geometrically modulated elastomeric substrates, Nature Methods, vol.174, issue.9, pp.733-736, 2010.
DOI : 10.1038/nmeth.1487

URL : http://europepmc.org/articles/pmc3069358?pdf=render

A. Schwab, A. Fabian, P. J. Hanley, and C. Stock, Role of Ion Channels and Transporters in Cell Migration, Physiological Reviews, vol.61, issue.4, pp.1865-1913, 2012.
DOI : 10.1007/s00109-007-0282-2

URL : http://physrev.physiology.org/content/physrev/92/4/1865.full.pdf

G. Sieck, , 2013.

A. L. Mcgregor, C. Hsia, and J. Lammerding, Squish and squeeze ??? the nucleus as a physical barrier during migration in confined environments, Current Opinion in Cell Biology, vol.40, pp.32-40, 2016.
DOI : 10.1016/j.ceb.2016.01.011

A. D. Doyle, R. J. Petrie, M. L. Kutys, K. M. Yamada-64, K. M. Petrie et al., Dimensions in cell migration Current opinion in cell biology 25 Multiple mechanisms of 3D migration: the origins of plasticity. Current opinion The Cell: A Molecular Approach, Nature medicine, vol.42, issue.3, pp.642-649, 1997.

D. C. Macallan, C. A. Fullerton, and R. A. ,

K. Hellerstein, Measurement of cell proliferation by labeling of DNA with stable isotope-labeled glucose: studies in vitro, in animals, and in humans, Proceedings of the National Academy of Sciences, vol.95, pp.708-713, 1998.

M. Bachman, S. Uribe-lewis, X. Yang, H. E. Burgess, and M. ,

A. Reik, S. Murrell, and . Balasubramanian, 5-Formylcytosine can be a stable DNA modification in mammals, Nature chemical biology, vol.11, pp.555-557, 2015.

J. Reinert and H. Holtzer, Cell cycle and cell differentiation, 69. M. S. Kallos, Embryonic Stem Cells -Differentiation and Pluripotent Alternatives. (InTech, 2011.
DOI : 10.1007/978-3-540-37390-2

K. Takahashi and S. Yamanaka, Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors, Cell, vol.126, issue.4, pp.663-676, 2006.
DOI : 10.1016/j.cell.2006.07.024

URL : https://doi.org/10.1016/j.cell.2006.07.024

K. Okita, T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells, Nature, vol.62, issue.7151, pp.313-317, 2007.
DOI : 10.1038/nature05934

K. Takahashi, K. Tanabe, M. Ohnuki, and M. ,

S. Tomoda and . Yamanaka, Induction of pluripotent stem cells from adult human fibroblasts by defined factors 73. http:// philschatz.com/anatomy-book/contents/m46036.html. 74, Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Frontiers in cell and developmental biology 3, pp.861-872, 2007.

X. Duan, Q. Tu, J. Zhang, J. Ye, C. Sommer et al.,

P. Kaplan, J. Yang, and . Chen, Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration 76. S. Yamanaka, A fresh look at iPS cells, Journal of cellular physiology Cell, vol.226, issue.137, pp.150-157, 2009.

G. Romano, F. Morales, I. R. Marino, and A. Giordano, A Commentary on iPS Cells: Potential Applications in Autologous Transplantation, Study of Illnesses and Drug Screening, Journal of Cellular Physiology, vol.69, issue.2, pp.148-152, 2013.
DOI : 10.1007/s00018-012-1078-2

Y. Shao, K. Taniguchi, K. Gurdziel, R. F. Townshend, X. Xue et al.,

J. Yong, J. R. Sang, D. L. Spence, J. Gumucio, and . Fu, Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche, Nature materials, vol.16, pp.419-425, 2017.

Y. Wang, J. Hu, J. Jiao, Z. Liu, Z. Zhou et al., Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds, Biomaterials, vol.35, issue.32, pp.8960-8969, 2014.
DOI : 10.1016/j.biomaterials.2014.07.011

Y. Tang, L. Liu, J. Li, L. Yu, L. Wang et al., Induction and differentiation of human induced pluripotent stem cells into functional cardiomyocytes on a compartmented monolayer of gelatin nanofibers, Nanoscale, vol.50, issue.314, pp.14530-14540, 2016.
DOI : 10.1016/j.biomaterials.2015.01.037

Y. Tang, L. Liu, J. Li, L. Yu, F. P. Severino et al.,

Y. Torre and . Chen, Effective motor neuron differentiation of hiPSCs on a patch made of crosslinked monolayer gelatin nanofibers, Journal of Materials Chemistry B, vol.4, pp.3305-3312, 2016.

J. Kim, M. Johnson, P. Hill, and B. K. Gale, Microfluidic sample preparation: cell lysis and nucleic acid purification, Integrative Biology, vol.37, issue.10, pp.574-586, 2009.
DOI : 10.1039/b905065p

H. Song, D. L. Chen, and R. F. Ismagilov, Reactions in Droplets in Microfluidic Channels, Angewandte Chemie International Edition, vol.97, issue.44, pp.7336-7356, 2006.
DOI : 10.1002/anie.200601554

S. Shen, C. Ma, L. Zhao, Y. Wang, J. Wang et al.,

. Wang, High-throughput rare cell separation from blood samples using steric hindrance and inertial microfluidics Quake, Long-term monitoring of bacteria undergoing programmed population control in a microchemostat, Science, vol.14, issue.309, pp.2525-2538, 2005.

M. W. Ashraf, S. Tayyaba, and N. Afzulpurkar, Micro Electromechanical Systems (MEMS) Based Microfluidic Devices for Biomedical Applications, International Journal of Molecular Sciences, vol.28, issue.2, pp.3648-3704, 2011.
DOI : 10.1007/s11095-010-0101-2

T. Someya, A. Dodabalapur, A. Gelperin, H. E. Katz, and Z. Bao, Integration and Response of Organic Electronics with Aqueous Microfluidics, Langmuir, vol.18, issue.13
DOI : 10.1021/la020026z

, Supercritical microfluidics: Opportunities in flow-through chemistry and materials science, Langmuir The Journal of Supercritical Fluids, vol.18, issue.66, pp.5299-5302, 2002.

K. I. Ohno, K. Tachikawa, and A. Manz, Microfluidics: Applications for analytical purposes in chemistry and biochemistry, ELECTROPHORESIS, vol.7, issue.131, pp.4443-4453, 2008.
DOI : 10.1002/elps.200800121

P. S. Waggoner and H. G. Craighead, Micro- and nanomechanical sensors for environmental, chemical, and biological detection, Lab on a Chip, vol.75, issue.2, pp.1238-1255, 2007.
DOI : 10.1103/PhysRevB.58.9067

B. D. Plouffe, T. Kniazeva, J. E. Mayer, S. K. Murthy, and V. L. Sales, Development of microfluidics as endothelial progenitor cell capture technology for cardiovascular tissue engineering and diagnostic medicine, The FASEB Journal, vol.23, issue.10, pp.3309-3314, 2009.
DOI : 10.1002/ccd.21302

I. A. Grout, Integrated circuit test engineering: modern techniques

S. Thomas, R. Shanks, and J. Joy, 94 Micro-and Nanostructured Polymer Systems: From Synthesis to Applications, 2005.

E. Oosterbroek and A. , Van den Berg, Lab-on-a-chip: miniaturized systems for (bio) chemical analysis and synthesis, 2003.

P. S. Dittrich and A. Manz, Lab-on-a-chip: microfluidics in drug discovery, Nature Reviews Drug Discovery, vol.20, issue.3, pp.210-218, 2006.
DOI : 10.1021/bp034077d

D. Mark, S. Haeberle, G. Roth, F. Von-stetten, and R. Zengerle, Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications, Chemical Society Reviews, vol.25, issue.3, pp.1153-1182, 2010.
DOI : 10.1155/S1463924695000174

O. Geschke, H. Klank, and P. Telleman, Microsystem Engineering of Lab-on-a-chip Devices, 99. F. E. Tay, Microfluidics and BioMEMS applications, 2002.
DOI : 10.1002/3527601651

J. Fu, Q. Fang, T. Zhang, and X. Jin, Laser-Induced Fluorescence Detection System for Microfluidic Chips Based on an Orthogonal Optical Arrangement, Analytical Chemistry, vol.78, issue.11, pp.3827-3834, 2006.
DOI : 10.1021/ac060153q

K. Hsieh, A. S. Patterson, B. S. Ferguson, K. W. Plaxco, and H. T. Soh, Rapid, Sensitive, and Quantitative Detection of Pathogenic DNA at the Point of Care through Microfluidic Electrochemical Quantitative Loop-Mediated Isothermal Amplification, Angewandte Chemie, vol.82, issue.20, pp.4980-4984, 2012.
DOI : 10.1021/ac1000652

C. Wang, R. Oleschuk, F. Ouchen, J. Li, P. Thibault et al., Integration of immobilized trypsin bead beds for protein digestion within a microfluidic chip incorporating capillary electrophoresis separations and an electrospray mass spectrometry interface Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy, Rapid Communications in Mass Spectrometry Journal of Micromechanics and Microengineering, vol.14, issue.263, pp.1377-1383, 2000.

X. Wang, O. Hofmann, R. Das, E. M. Barrett, and D. D. Bradley, Integrated thin-film polymer/fullerene photodetectors for on-chip microfluidic chemiluminescence detection, Lab Chip, vol.20, issue.1, pp.58-63, 2007.
DOI : 10.1002/bio.846

F. L. Milnera, A. Dickert, P. Bailey, and . Ertl, Detection of viruses with molecularly imprinted polymers integrated on a microfluidic biochip using contact-less dielectric microsensors, Lab on a chip, vol.9, pp.3549-3556, 2009.

T. Thorsen, S. J. Maerkl, and S. R. Quake, Microfluidic Large-Scale Integration, Science, vol.298, issue.5593, pp.580-584, 2002.
DOI : 10.1126/science.1076996

C. A. Emrich, H. Tian, I. L. Medintz, and R. A. Mathies, Microfabricated 384-Lane Capillary Array Electrophoresis Bioanalyzer for Ultrahigh-Throughput Genetic Analysis, Analytical Chemistry, vol.74, issue.19, pp.5076-5083, 2002.
DOI : 10.1021/ac020236g

J. M. Ramsey, J. P. Alarie, S. C. Jacobson, and N. Peterson, Micro Total Analysis Systems Micromachined impedance References 1. D. Natelson, Nanostructures and nanotechnology, pp.314-316, 2002.

D. Qin, Y. Xia, J. A. Rogers, and R. J. Jackman,

. Whitesides, Microsystem technology in chemistry and life science, pp.1-20, 1998.

S. Kang, Nano Replication: Processes and Applications, 2012.

M. H. Li, P. Keller, J. Yang, and P. A. Albouy, An Artificial Muscle with Lamellar Structure Based on a Nematic Triblock Copolymer, Advanced Materials, vol.3, issue.21, pp.1922-1925, 2004.
DOI : 10.1002/masy.19971130107

L. Hu, S. Dai, J. Weng, S. Xiao, and Y. ,

L. Pan and . Liang, Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules, The Journal of Physical Chemistry B, vol.111, pp.358-362, 2007.

S. Semancik, R. Cavicchi, M. Wheeler, J. Tiffany, G. Poirier et al., Microhotplate platforms for chemical sensor research, Sensors and Actuators B: Chemical, vol.77, issue.1-2, pp.579-591, 2001.
DOI : 10.1016/S0925-4005(01)00695-5

I. Hartl, X. Li, C. Chudoba, R. Ghanta, T. Ko et al.,

. Windeler, Ultrahigh-resolution optical coherence tomography using continuum generation in an air?silica microstructure optical fiber, Optics letters, vol.26, pp.608-610, 2001.

J. Castillo-león and W. Svendsen, Micro and nanofabrication using self-assembled biological nanostructures, 2014.

N. Xi, M. Zhang, and G. Li, Modeling and Control for Micro/Nano Devices lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing Measurement, and Phenomena, vol.16, pp.3142-3149, 1998.

W. Hinsberg, F. Houle, J. Hoffnagle, M. Sanchez, G. Wallraff et al.,

S. Morrison and . Frank, Deep-ultraviolet interferometric lithography as a tool for assessment of chemically amplified photoresist performance, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing Measurement, and Phenomena, vol.16, pp.3689-3694, 1998.

H. J. Levinson, Principles of lithography. Y. Xia, G. M. Whitesides, Soft lithography. Annual review of materials science, pp.153-184, 1998.

J. A. Rogers and R. G. Nuzzo, Recent progress in soft lithography, Materials Today, vol.8, issue.2, pp.50-56, 2005.
DOI : 10.1016/S1369-7021(05)00702-9

V. Chandrasekhar, Inorganic and organometallic polymers, 2005.

C. Martos, F. Rubio, J. Rubio, and J. Oteo, Surface energy of silica-TEOS-PDMS ormosils, Journal of Sol-Gel Science and Technology, vol.20, issue.2, pp.197-210, 2001.
DOI : 10.1023/A:1008759708396

A. Esteves, J. Brokken-zijp, J. Lavèn, H. Huinink, N. Reuvers et al., Influence of cross-linker concentration on the cross-linking of PDMS and the network structures formed From micro-to nanofabrication with soft materials Engineering metallic nanostructures for plasmonics and nanophotonics, Polymer Science Reports on Progress in Physics, vol.50, issue.75, pp.3955-3966, 2000.

Y. Xia, E. Kim, X. Zhao, J. A. Rogers-43, J. L. Jackman et al., Complex optical surfaces formed by replica molding against elastomeric masters Fabrication of submicrometer features on curved substrates by microcontact printing, Science Science, vol.273, issue.269, p.664, 1995.

E. Kim, Y. Xia, and G. M. Whitesides, Micromolding in Capillaries:?? Applications in Materials Science, Journal of the American Chemical Society, vol.118, issue.24, 2002.
DOI : 10.1021/ja960151v

C. Priest, P. J. Gruner, E. J. Szili, S. A. Al-bataineh, and J. W. ,

D. A. Ralston, R. D. Steele, and . Short, Microplasma patterning of bonded microchannels using high-precision " injected " electrodes, Lab on a chip, vol.11, pp.541-544, 2011.

H. O. Pierson, L. Hsu, S. Rieth, M. Kammer, F. Orthner et al., Handbook of chemical vapor deposition: principles, technology and applications 63. http:// www.cwst.cc/parylene-coatings.html. 64 Effect of thermal and deposition processes on surface morphology, crystallinity, and adhesion of Parylene-C, Sensors and Materials, vol.20, pp.87-102, 1999.

C. Hassler, R. P. Von-metzen, P. Ruther, and T. Stieglitz, Characterization of parylene C as an encapsulation material for implanted neural prostheses, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.21, pp.266-274, 2010.
DOI : 10.1038/sc.1982.65

T. Y. Chang, V. G. Yadav, and S. De,

S. Chen, M. R. Selvarasah, A. Dokmeci, and . Khademhosseini, Cell and protein compatibility of parylene-C surfaces, Langmuir : the ACS journal of surfaces and colloids, vol.23, pp.11718-11725, 2007.

Y. S. Shin, K. Cho, S. H. Lim, S. Chung, S. Park et al., PDMS-based micro PCR chip with Parylene coating, Journal of Micromechanics and Microengineering, vol.13, issue.5, p.768, 2003.
DOI : 10.1088/0960-1317/13/5/332

J. H. Wendorff, S. Agarwal, and A. Greiner, Electrospinning: materials, processing, and applications, 2012.
DOI : 10.1002/9783527647705

G. Mitchell, Electrospinning: principles, practice and possibilities, 2015.
DOI : 10.1039/9781849735575

G. Taylor, E. Zussman, and A. Yarin, Experimental investigation of the governing parameters in the electrospinning of polymer solutions, Proceedings of the Royal Society of London A: Mathematical, pp.383-397, 1964.

J. Doshi and D. H. Reneker, Electrospinning process and applications of electrospun fibers, Journal of Electrostatics, vol.35, issue.2-3, pp.151-160, 1995.
DOI : 10.1016/0304-3886(95)00041-8

D. Li, Y. Wang, and Y. Xia, Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays, Nano Letters, vol.3, issue.8, pp.1167-1171, 2003.
DOI : 10.1021/nl0344256

D. Li, Y. Wang, and Y. Xia, Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-Layer Stacked Films, Advanced Materials, vol.16, issue.4, pp.361-366, 2004.
DOI : 10.1002/adma.200306226

D. Li, G. Ouyang, J. T. Mccann, and Y. Xia, Collecting Electrospun Nanofibers with Patterned Electrodes, Nano Letters, vol.5, issue.5, pp.913-916, 2005.
DOI : 10.1021/nl0504235

D. Zhang and J. Chang, Patterning of Electrospun Fibers Using Electroconductive Templates, Advanced Materials, vol.16, issue.21, pp.3664-3667, 2007.
DOI : 10.1002/adma.200700896

D. Zhang and J. Chang, Electrospinning of Three-Dimensional Nanofibrous Tubes with Controllable Architectures, Nano Letters, vol.8, issue.10, pp.3283-3287, 2008.
DOI : 10.1021/nl801667s

G. Chang and J. Shen, Helical Nanoribbons Fabricated by Electrospinning, Macromolecular Materials and Engineering, vol.18, issue.12, pp.1071-1074, 2011.
DOI : 10.1002/adma.200600103

G. Chang, G. Song, J. Yang, R. Huang, A. Kozinda et al., Morphology control of nanohelix by electrospinning, Applied Physics Letters, vol.101, issue.26, p.263505, 2012.
DOI : 10.1063/1.1630844

G. Chang and J. Shen, Fabrication of Microropes via Bi-electrospinning with a Rotating Needle Collector, Macromolecular Rapid Communications, vol.10, issue.24, pp.2151-2154, 2010.
DOI : 10.1002/marc.201000463

D. Paneva, N. Manolova, I. Rashkov, H. Penchev, M. Mihai et al., Self-organization of fibers into yarns during electrospinning of polycation/polyanion polyelectrolyte pairs, Digest Journal of Nanomaterials and Biostructures, vol.5, pp.811-819, 2010.

B. Sun, Y. Long, H. Zhang, M. Li, J. Duvail et al., Advances in three-dimensional nanofibrous macrostructures via electrospinning, Progress in Polymer Science, vol.39, issue.5, pp.862-890, 2001.
DOI : 10.1016/j.progpolymsci.2013.06.002

L. Wannatong, A. Sirivat, and P. Supaphol, Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene, Polymer International, vol.53, issue.11, pp.1851-1859, 2004.
DOI : 10.1002/pi.1599

P. Katta, M. Alessandro, R. Ramsier, and G. Chase, Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector, Nano Letters, vol.4, issue.11, pp.2215-2218, 2004.
DOI : 10.1021/nl0486158

J. Kameoka and H. Craighead, Fabrication of oriented polymeric nanofibers on planar surfaces by electrospinning, Applied Physics Letters, vol.83, issue.2, pp.371-373, 2003.
DOI : 10.1021/ac020396s

J. Kameoka, R. Orth, Y. Yang, D. Czaplewski, R. Mathers et al., A scanning tip electrospinning source for deposition of oriented nanofibres, Nanotechnology, vol.14, issue.10, p.1124, 2003.
DOI : 10.1088/0957-4484/14/10/310

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers et al., One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, Advanced Materials, vol.15, issue.5, pp.353-389, 2003.
DOI : 10.1002/adma.200390087

H. Junoh, J. Jaafar, M. N. Norddin, A. F. Ismail, and M. H. ,

M. A. Othman, N. Rahman, W. N. Yusof, H. Salleh, and . Ilbeygi, A review on the fabrication of electrospun polymer electrolyte membrane for direct methanol fuel cell, Journal of Nanomaterials, vol.2015, issue.4, 2015.

D. Sun, C. Chang, S. Li, and L. Lin, Near-Field Electrospinning, Nano Letters, vol.6, issue.4, pp.839-842, 2006.
DOI : 10.1021/nl0602701

G. Zheng, W. Li, X. Wang, D. Wu, D. Sun et al., Controlling cell behavior through the design of polymer surfaces, pp.2208-2220, 2010.

T. B. Saw, S. Jain, B. Ladoux, and C. T. Lim, Mechanobiology of Collective Cell Migration, Cellular and Molecular Bioengineering, vol.12, issue.6, pp.3-13, 2015.
DOI : 10.1038/ncb2055

J. Li, M. Wu, J. Chu, R. Sochol, and S. Patel, Engineering micropatterned surfaces to modulate the function of vascular stem cells, Biochemical and Biophysical Research Communications, vol.444, issue.4, pp.562-567, 2014.
DOI : 10.1016/j.bbrc.2014.01.100

S. Vedula, A. Ravasio, E. Anon, T. Chen, G. Peyret et al.,

. Ladoux, Microfabricated environments to study collective cell behaviors, pp.235-252, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00951353

N. Annabi, A. Tamayol, J. A. Uquillas, M. Akbari, L. E. Bertassoni et al.,

G. Cha, M. R. Camci?unal, N. A. Dokmeci, A. Peppas, and . Khademhosseini, anniversary article: rational design and applications of hydrogels in regenerative medicine, Advanced materials, vol.26, pp.25-85, 2014.

J. Thiele, Y. Ma, S. Bruekers, S. Ma, and W. , 25th Anniversary Article: Designer Hydrogels for Cell Cultures: A Materials Selection Guide, Advanced Materials, vol.336, issue.1, pp.125-148, 2014.
DOI : 10.1126/science.1214804

Y. Ding, M. Yang, Z. Yang, R. Luo, X. Lu et al., Cooperative control of blood compatibility and re-endothelialization by immobilized heparin and substrate topography, Acta Biomaterialia, vol.15, pp.150-163, 2015.
DOI : 10.1016/j.actbio.2014.12.014

X. Du, Y. Wang, L. Yuan, Y. Weng, G. Chen et al., Guiding the behaviors of human umbilical vein endothelial cells with patterned silk fibroin films, Colloids and Surfaces B: Biointerfaces, vol.122, pp.79-84, 2014.
DOI : 10.1016/j.colsurfb.2014.06.049

F. Mei, S. P. Fancy, Y. A. Shen, J. Niu, C. Zhao et al.,

S. R. Lee, S. A. Mayoral, and . Redmond, Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis, Nature medicine, vol.20, pp.954-960, 2014.

B. Ladoux, E. Anon, M. Lambert, A. Rabodzey, and P. ,

R. Silberzan and . Mege, Strength dependence of cadherin-mediated adhesions, Biophysical journal, vol.98, pp.534-542, 2010.

L. Trichet, J. L. Digabel, R. J. Hawkins, S. R. Vedula, M. Gupta et al.,

P. Ribrault, R. Hersen, B. Voituriez, and . Ladoux, Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness, Proceedings of the National Academy of Sciences, vol.109, pp.6933-6938, 2012.

J. Wei, J. Shi, B. Wang, Y. Tang, X. Tu et al., Fabrication of adjacent micropillar arrays with different heights for cell studies, Microelectronic Engineering, vol.158, pp.22-25, 2016.
DOI : 10.1016/j.mee.2016.03.008

URL : https://hal.archives-ouvertes.fr/hal-01285505

K. D. Wise and K. Najafi, Microfabrication techniques for integrated sensors and microsystems, Science, vol.254, issue.5036, p.1335, 1991.
DOI : 10.1126/science.1962192

A. Hierlemann, O. Brand, C. Hagleitner, and H. Baltes, Microfabrication techniques for chemical/biosensors, Proceedings of the IEEE 91, pp.839-863, 2003.
DOI : 10.1109/JPROC.2003.813583

K. Shah, W. Shin, and R. Besser, A PDMS micro proton exchange membrane fuel cell by conventional and non-conventional microfabrication techniques, Sensors and Actuators B: Chemical, vol.97, issue.2-3, pp.157-167, 2004.
DOI : 10.1016/j.snb.2003.08.008

X. Tu, J. Wei, B. Wang, Y. Tang, J. Shi et al., Patterned parylene C for cell adhesion, spreading and alignment studies, Microelectronic Engineering, vol.175, pp.56-60, 2017.
DOI : 10.1016/j.mee.2017.01.013

X. Q. Brown, K. Ookawa, and J. Y. Wong, Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response, Biomaterials, vol.26, issue.16, pp.3123-3129, 2005.
DOI : 10.1016/j.biomaterials.2004.08.009

A. Saez, A. Buguin, P. Silberzan, and B. Ladoux, Is the Mechanical Activity of Epithelial Cells Controlled by Deformations or Forces?, Biophysical Journal, vol.89, issue.6, pp.52-54, 2005.
DOI : 10.1529/biophysj.105.071217

URL : https://hal.archives-ouvertes.fr/hal-00188263

A. Saez, E. Anon, M. Ghibaudo, O. Du-roure, J. Di-meglio et al., Traction forces exerted by epithelial cell sheets, Journal of Physics: Condensed Matter, vol.22, issue.19, p.194119, 2010.
DOI : 10.1088/0953-8984/22/19/194119

B. Wang, J. Shi, J. Wei, L. Wang, X. Tu et al., Fabrication of elastomer pillar arrays with height gradient for cell culture studies, Microelectronic Engineering, vol.175, pp.50-55, 2017.
DOI : 10.1016/j.mee.2017.01.014

K. Ragaert, I. De-baere, L. Cardon, and J. Degrieck, Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy, 6th Polymers & Mould Innovations International Conference Proceedings of the National Academy of Sciences 96, pp.339-344, 1999.

R. 1. Lutolf and J. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering, Nature Biotechnology, vol.961, issue.1, pp.47-55, 2005.
DOI : 10.1111/j.1749-6632.2002.tb03068.x

P. Friedl and K. Wolf, Tumour-cell invasion and migration: diversity and escape mechanisms, Nature Reviews Cancer, vol.3, issue.5, pp.362-374, 2003.
DOI : 10.1038/nrc1075

F. Kai, H. Laklai, and V. M. Weaver, Force Matters: Biomechanical Regulation of Cell Invasion and Migration in Disease, Trends in Cell Biology, vol.26, issue.7, pp.486-497, 2016.
DOI : 10.1016/j.tcb.2016.03.007

D. A. Lauffenburger and A. F. Horwitz, Cell Migration: A Physically Integrated Molecular Process, Cell, vol.84, issue.3, pp.359-369, 1996.
DOI : 10.1016/S0092-8674(00)81280-5

A. D. Doyle, M. L. Kutys, M. A. Conti, K. Matsumoto, R. S. Adelstein et al., Micro-environmental control of cell migration - myosin IIA is required for efficient migration in fibrillar environments through control of cell adhesion dynamics, Journal of Cell Science, vol.125, issue.9, pp.2244-2256, 2012.
DOI : 10.1242/jcs.098806

D. H. Kim, C. H. Seo, K. Han, K. W. Kwon, A. Levchenko et al., Guided Cell Migration on Microtextured Substrates with Variable Local Density and Anisotropy, Advanced Functional Materials, vol.16, issue.10, pp.1579-1586, 2009.
DOI : 10.1002/adfm.200801174

M. Gupta, B. R. Sarangi, and J. Deschamps,

F. Callan-jones, R. Margadant, C. T. Mège, R. Lim, B. Voituriez et al., Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing, Nature, vol.6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01226836

S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt, Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers, Macromolecules, vol.35, issue.22, pp.8456-8466, 2002.
DOI : 10.1021/ma020444a

E. K. Yim, S. W. Pang, and K. W. Leong, Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Experimental cell research 313, pp.1820-1829, 2007.

J. Xie, W. Liu, M. R. Macewan, Y. C. Yeh, S. Thomopoulos et al., Nanofiber membranes with controllable microwells and structural cues and their use in forming cell microarrays and neuronal networks General functionalization route for cell adhesion on non-wetting surfaces, Biomaterials, vol.7, issue.31, pp.293-297, 2010.

M. A. Cole, N. H. Voelcker, H. Thissen, and H. J. Griesser, Stimuli-responsive interfaces and systems for the control of protein???surface and cell???surface interactions, Biomaterials, vol.30, issue.9, pp.1827-1850, 2009.
DOI : 10.1016/j.biomaterials.2008.12.026

J. Fu, Y. Wang, M. T. Yang, R. A. Desai, X. Yu et al., Mechanical regulation of cell function with geometrically modulated elastomeric substrates, Nature Methods, vol.174, issue.9, pp.733-736, 2010.
DOI : 10.1038/nmeth.1487

A. Higuchi, Q. Ling, Y. Chang, S. Hsu, and A. Umezawa, Physical Cues of Biomaterials Guide Stem Cell Differentiation Fate, Chemical Reviews, vol.113, issue.5, pp.3297-3328, 2013.
DOI : 10.1021/cr300426x

Y. Sun, K. M. Yong, L. G. Villa-diaz, X. Zhang, and W. ,

H. Weng, P. H. Xu, J. Krebsbach, and . Fu, Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells, Nature materials, vol.13, pp.599-604, 2014.

Y. Tang, L. Liu, J. Li, L. Yu, F. P. Severino et al.,

Y. Torre and . Chen, Effective motor neuron differentiation of hiPSCs on a patch made of crosslinked monolayer gelatin nanofibers, Journal of Materials Chemistry B, vol.4, pp.3305-3312, 2016.

M. Schindler, I. Ahmed, J. Kamal, A. Nur-e-kamal, T. H. Grafe et al.,

S. Chung and . Meiners, A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture, Biomaterials, vol.26, pp.5624-5631, 2005.

J. Y. Lee, C. A. Bashur, A. S. Goldstein, and C. E. Schmidt, Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications, Biomaterials, vol.30, issue.26, pp.4325-4335, 2009.
DOI : 10.1016/j.biomaterials.2009.04.042

J. Wei, J. Shi, B. Wang, Y. Tang, X. Tu et al., Fabrication of adjacent micropillar arrays with different heights for cell studies, Microelectronic Engineering, vol.158, pp.22-25, 2016.
DOI : 10.1016/j.mee.2016.03.008

URL : https://hal.archives-ouvertes.fr/hal-01285505

T. B. Puschmann, C. Zandén, Y. De-pablo, F. Kirchhoff, M. Pekna et al.,

M. Liu and . Pekny, Bioactive 3D cell culture system minimizes cellular stress and maintains the in vivo?like morphological complexity of astroglial cells, Glia, vol.61, pp.432-440, 2013.

D. Landis, L. A. Weinstein, and C. J. Skordeles, Serum influences the differentiation of membrane structure in cultured astrocytes, Glia, vol.75, issue.3, pp.212-221, 1990.
DOI : 10.1016/B978-0-12-250453-2.50007-4

F. P. Severino, J. Ban, Q. Song, M. Tang, G. Bianconi et al.,

T. , The role of dimensionality in neuronal network dynamics Scientific reports 6, 2016.

A. Mazzoni, F. D. Broccard, E. Garcia-perez, P. Bonifazi, M. E. Ruaro et al., On the Dynamics of the Spontaneous Activity in Neuronal Networks, PLoS ONE, vol.17, issue.5, p.439, 2007.
DOI : 10.1371/journal.pone.0000439.t001

C. Grienberger and A. Konnerth, Imaging Calcium in Neurons, Neuron, vol.73, issue.5, pp.862-885, 2012.
DOI : 10.1016/j.neuron.2012.02.011

D. Smetters, A. Majewska, and R. Yuste, Detecting Action Potentials in Neuronal Populations with Calcium Imaging, Methods, vol.18, issue.2, pp.215-221, 1999.
DOI : 10.1006/meth.1999.0774

R. Kerr, V. Lev-ram, G. Baird, P. Vincent, R. Y. Tsien et al., Optical Imaging of Calcium Transients in Neurons and Pharyngeal Muscle of C. elegans, Neuron, vol.26, issue.3, pp.583-594, 2000.
DOI : 10.1016/S0896-6273(00)81196-4

D. Pozzi, J. Ban, F. Iseppon, and V. Torre, An improved method for growing neurons: Comparison with standard protocols, Journal of Neuroscience Methods, vol.280, pp.1-10, 2017.
DOI : 10.1016/j.jneumeth.2017.01.013

J. Wei, D. Pozzi, F. P. Severino, V. Torre, and Y. Chen, Fabrication of PLGA nanofibers on PDMS micropillars for neuron culture studies, Microelectronic Engineering, vol.175, issue.248, pp.67-72, 1990.
DOI : 10.1016/j.mee.2017.01.015

R. 1. Liu, M. Le-berre, F. Lautenschlaeger, P. Maiuri, A. Callan-jones et al., Confinement and Low Adhesion Induce Fast Amoeboid Migration of Slow Mesenchymal Cells, Cell, vol.160, issue.4, pp.659-672, 2015.
DOI : 10.1016/j.cell.2015.01.007

J. Swift, I. L. Ivanovska, A. Buxboim, T. Harada, P. D. Dingal et al.,

J. D. Pinter, K. R. Pajerowski, J. Spinler, M. Shin, and . Tewari, Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation, Science, vol.341, p.1240104, 2013.

C. T. Skau, R. S. Fischer, P. Gurel, H. R. Thiam, A. Tubbs et al., RETRACTED: FMN2 Makes Perinuclear Actin to Protect Nuclei during Con???ned Migration and Promote Metastasis, Cell, vol.167, issue.6, pp.1571-1585, 2016.
DOI : 10.1016/j.cell.2016.10.023

D. G. Thomas, A. Yenepalli, C. M. Denais, A. Rape, and J. R. Beach,

W. P. Wang, H. Schiemann, J. Baskaran, T. T. Lammerding, and . Egelhoff, Non-muscle myosin IIB is critical for nuclear translocation during 3D invasion

, J Cell Biol, p.201502039, 2015.

R. J. Petrie and K. M. Yamada, Multiple mechanisms of 3D migration: the origins of plasticity. Current opinion, pp.7-12, 2016.

R. P. Mecham, D. E. Birk, and P. D. Yurchenco, Extracellular matrix assembly and structure, 2013.

J. D. Pajerowski, K. N. Dahl, F. L. Zhong, P. J. Sammak, and D. E. Discher, Physical plasticity of the nucleus in stem cell differentiation, Proceedings of the National Academy of Sciences, vol.117, issue.10, pp.15619-15624, 2007.
DOI : 10.1242/jcs.01073

A. B. Mathur, A. M. Collinsworth, W. M. Reichert, W. E. Kraus, and G. A. ,

. Truskey, Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy, Journal of biomechanics, vol.34, pp.1545-1553, 2001.

X. Cao, E. Moeendarbary, P. Isermann, and P. M. Davidson,

B. Chen, A. K. Burkart, J. Lammerding, R. D. Kamm, and V. B. Shenoy, A Chemomechanical Model for Nuclear Morphology and Stresses during Cell Transendothelial Migration, Biophysical journal, vol.111, pp.1541-1552, 2016.

Y. Sun, K. M. Yong, L. G. Villa-diaz, X. Zhang, and W. ,

H. Weng, P. H. Xu, J. Krebsbach, and . Fu, Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells, Nature materials, vol.13, pp.599-604, 2014.

Y. Shao, K. Taniguchi, K. Gurdziel, R. F. Townshend, X. Xue et al.,

J. Yong, J. R. Sang, D. L. Spence, J. Gumucio, and . Fu, Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche, Nature materials, vol.16, pp.419-425, 2017.

M. T. Yang, N. J. Sniadecki, and C. S. Chen, Geometric Considerations of Micro- to Nanoscale Elastomeric Post Arrays to Study Cellular Traction Forces, Advanced Materials, vol.10, issue.20, pp.3119-3123, 2007.
DOI : 10.1091/mbc.10.4.935

D. E. Discher, D. J. Mooney, and P. W. Zandstra, Growth Factors, Matrices, and Forces Combine and Control Stem Cells, Science, vol.106, issue.2, pp.1673-1677, 2009.
DOI : 10.1073/pnas.0808932106

R. 1. Förster, A. E. Mattis, E. Kremmer, E. Wolf, G. Brem et al., A Putative Chemokine Receptor, BLR1, Directs B Cell Migration to Defined Lymphoid Organs and Specific Anatomic Compartments of the Spleen, Cell, vol.87, issue.6, pp.1037-1047, 1996.
DOI : 10.1016/S0092-8674(00)81798-5

X. Zhao, S. Jain, H. B. Larman, S. Gonzalez, and D. J. Irvine, Directed cell migration via chemoattractants released from degradable microspheres, Biomaterials, vol.26, issue.24, pp.5048-5063, 2005.
DOI : 10.1016/j.biomaterials.2004.12.003

J. F. Feng, J. Liu, X. Z. Zhang, L. Zhang, J. Y. Jiang et al., Guided Migration of Neural Stem Cells Derived from Human Embryonic Stem Cells by an Electric Field, STEM CELLS, vol.16, issue.pt 6, pp.349-355, 2012.
DOI : 10.1038/sj.mt.6300374

C. Lo, H. Wang, and M. Dembo, Cell Movement Is Guided by the Rigidity of the Substrate, Biophysical Journal, vol.79, issue.1, pp.144-152, 2000.
DOI : 10.1016/S0006-3495(00)76279-5

J. Gurdon and P. Bourillot, Morphogen gradient interpretation, Nature, vol.126, issue.6858, pp.797-803, 2001.
DOI : 10.1093/emboj/20.13.3298

J. El-ali, P. K. Sorger, and K. F. Jensen, Cells on chips, Nature, vol.4, issue.7101, pp.403-411, 2006.
DOI : 10.1038/ncb0402-e101

N. L. Jeon, H. Baskaran, S. K. Dertinger, G. M. Whitesides, L. Van-de-water et al., Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device, Nature Biotechnology, vol.20, issue.8, pp.826-830, 2002.
DOI : 10.1128/MCB.20.19.7282-7291.2000

M. G. Roper, J. G. Shackman, G. M. Dahlgren, and R. T. Kennedy, Microfluidic Chip for Continuous Monitoring of Hormone Secretion from Live Cells Using an Electrophoresis-Based Immunoassay, Analytical Chemistry, vol.75, issue.18, pp.4711-4717, 2003.
DOI : 10.1021/ac0346813

D. Irimia, S. Liu, W. G. Tharp, A. Samadani, M. Toner et al.,

. Poznansky, Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients Guiding the behaviors of human umbilical vein endothelial cells with patterned silk fibroin films, Lab on a chip Colloids and Surfaces B: Biointerfaces, vol.6, issue.122, pp.191-198, 2006.

L. Trichet, J. L. Digabel, R. J. Hawkins, S. R. Vedula, M. Gupta et al.,

P. Ribrault, R. Hersen, B. Voituriez, and . Ladoux, Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness, Proceedings of the National Academy of Sciences, vol.109, pp.6933-6938, 2012.

B. Ladoux, E. Anon, M. Lambert, A. Rabodzey, and P. ,

R. Silberzan and . Mege, Strength dependence of cadherin-mediated adhesions, Biophysical journal, vol.98, pp.534-542, 2010.

J. Fu, Y. Wang, M. T. Yang, R. A. Desai, X. Yu et al., Mechanical regulation of cell function with geometrically modulated elastomeric substrates, Nature Methods, vol.174, issue.9, pp.733-736, 2010.
DOI : 10.1038/nmeth.1487

URL : http://europepmc.org/articles/pmc3069358?pdf=render

J. Wei, J. Shi, B. Wang, Y. Tang, X. Tu et al., Fabrication of adjacent micropillar arrays with different heights for cell studies, Microelectronic Engineering, vol.158, issue.77, pp.22-25, 2005.
DOI : 10.1016/j.mee.2016.03.008

URL : https://hal.archives-ouvertes.fr/hal-01285505

, Publication list

J. Wei, D. Pozzi, F. P. Severino, V. Torre, and Y. Chen, Fabrication of PLGA nanofibers on PDMS micropillars for neuron culture studies, Microelectronic Engineering, vol.175, pp.67-72, 2017.
DOI : 10.1016/j.mee.2017.01.015

J. Wei, J. Shi, B. Wang, Y. Tang, X. Tu et al., Fabrication of adjacent micropillar arrays with different heights for cell studies, Microelectronic Engineering, vol.158, pp.22-25, 2016.
DOI : 10.1016/j.mee.2016.03.008

URL : https://hal.archives-ouvertes.fr/hal-01285505

X. Tu, J. Wei, B. Wang, Y. Tang, J. Shi et al., Patterned parylene C for cell adhesion, spreading and alignment studies, Microelectronic Engineering, vol.175, pp.56-60, 2017.
DOI : 10.1016/j.mee.2017.01.013

B. Wang, J. Shi, J. Wei, L. Wang, X. Tu et al., Fabrication of elastomer pillar arrays with height gradient for cell culture studies, Microelectronic Engineering, vol.175, pp.50-55, 2017.
DOI : 10.1016/j.mee.2017.01.014

X. Tu, L. Wang, J. Wei, B. Wang, Y. Tang et al., 3D printed PEGDA microstructures for gelatin scaffold integration and neuron differentiation, Microelectronic Engineering, vol.158, pp.30-34, 2016.
DOI : 10.1016/j.mee.2016.03.007

URL : https://hal.archives-ouvertes.fr/hal-01285501

G. Zheng, L. Sun, X. Wang, J. Wei, L. Xu et al., Electrohydrodynamic direct-writing microfiber patterns under stretching, Applied Physics A, vol.5, issue.61, pp.1-9, 2016.
DOI : 10.1063/1.4902173