S. Artstein-avidan, B. Klartag, and V. Milman, The Santal?? point of a function, and a functional form of the Santal?? inequality, Mathematika, vol.10, issue.1-2, pp.33-48, 2005.
DOI : 10.1007/BF02018814

S. Artstein-avidan, B. Klartag, C. Schütt, and E. Werner, Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality, Journal of Functional Analysis, vol.262, issue.9, pp.4181-4204, 2012.
DOI : 10.1016/j.jfa.2012.02.014

URL : http://arxiv.org/abs/1110.5551

K. Ball, Isometric problems in ? p and sections of convex sets, 1986.

D. Bakry, I. Gentil, and M. Ledoux, Analysis and geometry of Markov diffusion operators, Grundlehren der Mathematischen Wissenschaften, vol.348
DOI : 10.1007/978-3-319-00227-9

URL : https://hal.archives-ouvertes.fr/hal-00929960

K. Ball, F. Barthe, W. Bednorz, K. Oleszkiewicz, and P. Wolff, L 1-SMOOTHING FOR THE ORNSTEIN???UHLENBECK SEMIGROUP, Mathematika, vol.59, issue.01, pp.160-168, 2013.
DOI : 10.5802/aif.357

URL : https://hal.archives-ouvertes.fr/hal-00960777

M. T. Barlow, J. Ding, A. Nachmias, and Y. Peres, The Evolution of the Cover Time, Combinatorics, Probability and Computing, vol.6, issue.03, pp.331-345, 2011.
DOI : 10.1214/07-AOP361

F. Barthe, On a reverse form of the Brascamp-Lieb inequality, Inventiones Mathematicae, vol.134, issue.2, pp.335-361, 1998.
DOI : 10.1007/s002220050267

URL : https://hal.archives-ouvertes.fr/hal-00694256

F. Baudoin, Conditioned stochastic differential equations: theory, examples and application to finance. Stochastic Process, Appl, vol.100, pp.109-145, 2002.
DOI : 10.1016/s0304-4149(02)00109-6

URL : http://doi.org/10.1016/s0304-4149(02)00109-6

S. G. Bobkov, On isoperimetric constants for log-concave probability distributions Geometric aspects of functional analysis, Lecture Notes in Math, pp.81-88, 1910.

C. Borell, Diffusion equations and geometric inequalities. Potential Anal, pp.49-71, 2000.

M. Boué and P. Dupuis, A variational representation for certain functionals of Brownian motion, Ann. Probab, vol.26, issue.4, pp.1641-1659, 1998.

J. Bourgain, On the distribution of polynomials on high-dimensional convex sets Geometric aspects of functional analysis, Lecture Notes in Math, pp.127-137, 1469.

H. J. Brascamp and E. H. Lieb, Best constants in Young's inequality, its converse, and its generalization to more than three functions, Advances in Mathematics, vol.20, issue.2, pp.151-173, 1976.
DOI : 10.1016/0001-8708(76)90184-5

S. Bubeck, R. Eldan, and J. Lehec, Sampling from a log-concave distribution with Projected Langevin Monte Carlo, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01428950

U. Caglar, M. Fradelizi, O. Guédon, J. Lehec, C. Schütt et al., -Affine Surface Area and Entropy Inequalities, International Mathematics Research Notices, vol.2016, issue.4, pp.1223-1250, 2016.
DOI : 10.1093/imrn/rnv151

URL : https://hal.archives-ouvertes.fr/hal-00294434

E. A. Carlen, E. H. Lieb, and M. Loss, A sharp analog of Young???s inequality on SN and related entropy inequalities, Journal of Geometric Analysis, vol.102, issue.2, pp.487-520, 2004.
DOI : 10.1007/BF02922101

W. Chen, N. Dafnis, and G. Paouris, Improved H??lder and reverse H??lder inequalities for Gaussian random vectors, Advances in Mathematics, vol.280, pp.643-689, 2015.
DOI : 10.1016/j.aim.2014.09.029

D. Cordero-erausquin and B. Maurey, Some extensions of the Prékopa-Leindler inequality using Borell's stochastic approach, 2015.

D. Cordero-erausquin, R. J. Mccann, and M. Schmuckenschläger, A Riemannian interpolation inequality ?? la Borell, Brascamp and Lieb, Inventiones Mathematicae, vol.146, issue.2, pp.219-257, 2001.
DOI : 10.1007/s002220100160

URL : https://hal.archives-ouvertes.fr/hal-00693677

A. Dalalyan, Theoretical guarantees for approximate sampling from smooth and logconcave densities. preprint, 2014.
DOI : 10.1111/rssb.12183

URL : http://arxiv.org/abs/1412.7392

J. Ding, J. R. Lee, and Y. Peres, Cover times, blanket times, and majorizing measures, Annals of Mathematics, vol.175, issue.3, pp.1409-1471, 2012.
DOI : 10.4007/annals.2012.175.3.8

URL : http://arxiv.org/abs/1004.4371

M. Dyer, A. Frieze, and R. Kannan, A random polynomial-time algorithm for approximating the volume of convex bodies, Journal of the ACM, vol.38, issue.1, pp.1-17, 1991.
DOI : 10.1145/102782.102783

R. Eldan, Thin Shell Implies Spectral Gap Up to Polylog via a Stochastic Localization Scheme, Geometric and Functional Analysis, vol.272, issue.5, pp.532-569, 2013.
DOI : 10.1007/s00039-013-0214-y

R. Eldan and B. Klartag, Approximately Gaussian marginals and the hyperplane conjecture, Contemp. Math, vol.545, pp.55-68, 2011.
DOI : 10.1090/conm/545/10764

URL : http://arxiv.org/abs/1001.0875

R. Eldan and J. R. Lee, Regularization under diffusion and anti-concentration of temperature, 2015.

R. Eldan and J. Lehec, Bounding the norm of a log-concave vector via thin-shell estimate. Geometric Aspects of Functional Analysis, Lecture Notes in Math, pp.107-122, 2014.

M. Émery, En cherchant une caract??risation variationnelle des martingales, Lecture Notes in Math, pp.147-154, 1321.
DOI : 10.1007/BFb0084131

M. Fathi, E. Indrei, and M. Ledoux, Quantitative logarithmic Sobolev inequalities and stability estimates, Discrete and Continuous Dynamical Systems, vol.36, issue.12, 2014.
DOI : 10.3934/dcds.2016097

URL : http://arxiv.org/abs/1410.6922

D. Feyel and A. S. , Measure transport on Wiener space and the Girsanov theorem, Comptes Rendus Mathematique, vol.334, issue.11, pp.1025-1028, 2002.
DOI : 10.1016/S1631-073X(02)02326-9

W. H. Fleming and H. M. Soner, Controlled Markov processes and viscosity solutions, 2006.

B. Fleury, O. Guédon, and G. Paouris, A stability result for mean width of <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msub><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:math>-centroid bodies, Advances in Mathematics, vol.214, issue.2, pp.865-877, 2007.
DOI : 10.1016/j.aim.2007.03.008

H. Föllmer, Time reversal on Wiener space Stochastic processes-mathematics and physics, Lecture Notes in Math, pp.119-129, 1158.

L. Gross, Logarithmic Sobolev Inequalities, American Journal of Mathematics, vol.97, issue.4, pp.1061-1083, 1975.
DOI : 10.2307/2373688

O. Guédon and E. Milman, Interpolating Thin-Shell and Sharp Large-Deviation Estimates for Lsotropic Log-Concave Measures, Geometric and Functional Analysis, vol.16, issue.5, pp.1043-1068, 2011.
DOI : 10.1007/s00039-011-0136-5

G. Hargé, A convex/log-concave correlation inequality for Gaussian measure and an application to abstract Wiener spaces, Probability Theory and Related Fields, vol.68, issue.3, pp.415-440, 2004.
DOI : 10.1007/s00440-004-0365-8

N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, 1989.

J. Kahn, J. H. Kim, L. Lovász, and V. H. Vu, The cover time, the blanket time, and the Matthews bound, Proceedings 41st Annual Symposium on Foundations of Computer Science, pp.467-475, 2000.
DOI : 10.1109/SFCS.2000.892134

R. Kannan, L. Lovász, and M. Simonovits, Isoperimetric problems for convex bodies and a localization lemma, Discrete & Computational Geometry, vol.32, issue.312, pp.3-4, 1995.
DOI : 10.1007/BF02574061

B. Klartag, On convex perturbations with a bounded isotropic constant, GAFA Geometric And Functional Analysis, vol.16, issue.6, pp.1274-1290, 2006.
DOI : 10.1007/s00039-006-0588-1

B. Klartag, A central limit theorem for convex sets, Inventiones mathematicae, vol.107, issue.3, pp.91-131, 2007.
DOI : 10.1007/s00222-006-0028-8

URL : http://arxiv.org/abs/math/0605014

M. Ledoux, The concentration of measure phenomenon Mathematical Surveys and Monographs, 2001.

J. Lehec, A direct proof of the functional Santal?? inequality, Comptes Rendus Mathematique, vol.347, issue.1-2, pp.55-58, 2009.
DOI : 10.1016/j.crma.2008.11.015

J. Lehec, Representation formula for the entropy and functional inequalities, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.49, issue.3, pp.885-899, 2013.
DOI : 10.1214/11-AIHP464

J. Lehec, Short Probabilistic Proof of the Brascamp-Lieb and Barthe Theorems, Bulletin canadien de math??matiques, vol.57, issue.3, pp.585-597, 2014.
DOI : 10.4153/CMB-2013-040-x

URL : https://hal.archives-ouvertes.fr/hal-01100925

J. Lehec, Cover Times and Generic Chaining, Journal of Applied Probability, vol.51, issue.01, pp.247-261, 2014.
DOI : 10.1214/aop/1176991894

URL : https://hal.archives-ouvertes.fr/hal-01100928

J. Lehec, Regularization in L_1 for the Ornstein-Uhlenbeck semigroup, Annales de la facult?? des sciences de Toulouse Math??matiques, vol.25, issue.1, pp.191-204, 2016.
DOI : 10.5802/afst.1492

URL : https://hal.archives-ouvertes.fr/hal-01428315

J. Lehec, Borell's formula for a Riemannian manifold and applications, 2015.

L. Lovász and S. Vempala, Hit-and-Run from a Corner, SIAM Journal on Computing, vol.35, issue.4, pp.985-1005, 2006.
DOI : 10.1137/S009753970544727X

R. J. Mccann, A Convexity Principle for Interacting Gases, Advances in Mathematics, vol.128, issue.1, pp.153-179, 1997.
DOI : 10.1006/aima.1997.1634

P. Matthews, Covering Problems for Brownian Motion on Spheres, The Annals of Probability, vol.16, issue.1, pp.189-199, 1988.
DOI : 10.1214/aop/1176991894

M. Meyer and A. Pajor, On Santaló's inequality Geometric aspects of functional analysis, Lecture Notes in Math, vol.88, pp.261-263, 1376.

E. Milman, On the role of convexity in isoperimetry, spectral gap and??concentration, Inventiones mathematicae, vol.115, issue.9, pp.1-43, 2009.
DOI : 10.1007/s00222-009-0175-9

E. Nelson, The free Markoff field, Journal of Functional Analysis, vol.12, issue.2, pp.211-227, 1973.
DOI : 10.1016/0022-1236(73)90025-6

URL : http://doi.org/10.1016/0022-1236(73)90025-6

J. Neveu, Sur l'espérance conditionnelle par rapport à un mouvement brownien, Ann. Inst. H. Poincaré Sect. B (N.S.), vol.12, issue.2, pp.105-109, 1976.

H. Robbins and S. Monro, A Stochastic Approximation Method, The Annals of Mathematical Statistics, vol.22, issue.3, pp.400-407, 1951.
DOI : 10.1214/aoms/1177729586

L. A. Santaló, Un invariante afin para los cuerpos convexos del espacio de n dimensiones, Portugal Math, vol.8, issue.4, pp.155-161, 1949.

D. Slepian, The one-sided barrier problem for Gaussian noise. Bell System Tech, J, vol.41, pp.463-501, 1962.

M. Talagrand, Regularity of gaussian processes, Acta Mathematica, vol.159, issue.0, pp.99-149, 1987.
DOI : 10.1007/BF02392556

M. Talagrand, A conjecture on convolution operators, and a non-Dunford-Pettis operator onL 1, Israel Journal of Mathematics, vol.288, issue.1, pp.82-88, 1989.
DOI : 10.1007/BF02764970

M. Talagrand, Transportation cost for Gaussian and other product measures, Geometric and Functional Analysis, vol.27, issue.3, pp.587-600, 1996.
DOI : 10.1007/BF02249265

M. Talagrand, Upper and lower bounds for stochastic processes. Modern methods and classical problems. A Series of Modern Surveys in Mathematics
DOI : 10.1007/978-3-642-54075-2

H. Tanaka, Stochastic Differential Equations with Reflecting Boundary Condition in Convex Regions, Hiroshima Math. J, vol.9, issue.1, pp.163-177, 1979.
DOI : 10.1142/9789812778550_0013

S. Vempala, Geometric random walks: a survey Combinatorial and computational geometry, Math. Sci. Res. Inst. Publ, vol.52, pp.577-616, 2005.