. Amigó, A comparison of extrinsic clustering evaluation metrics based on formal constraints, Information Retrieval, vol.30, issue.4, p.613, 2009.
DOI : 10.1007/s10791-008-9066-8

M. Arcadias, Apprentissage non-supervisé de dépendances à partir de textes, 2015.

S. Bandyopadhyay, S. Bandyopadhyay, and S. Saha, GAPS: A clustering method using a new point symmetry-based distance measure, Pattern Recognition, vol.40, issue.12, pp.403430-3451, 2007.
DOI : 10.1016/j.patcog.2007.03.026

. Banerjee, Model-based overlapping clustering, Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining , KDD '05, pp.532-537, 2005.
DOI : 10.1145/1081870.1081932

. Becker, Multifunctional proteins revealed by overlapping clustering in protein interaction network, Bioinformatics, vol.28, issue.1, pp.84-90, 2012.
DOI : 10.1093/bioinformatics/btr621

URL : https://hal.archives-ouvertes.fr/hal-00877694

Z. Belmandt, Manuel de prétopologie et ses applications, Hermes, p.472, 1993.

N. Ben and . Cir, Generalization of c-means for identifying non-disjoint clusters with overlap regulation, Pattern Recognition Letters, vol.45, pp.92-98, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00978269

N. Ben, . Cir, . Essoussi, N. Ben, C. Cir et al., Non-disjoint cluster analysis with non-uniform density, Mining Intelligence and Knowledge Exploration, First International Conference, pp.100-111, 2013.

N. Ben and . Cir, Generalization of c-means for identifying non-disjoint clusters with overlap regulation, Pattern Recognition Letters, vol.45, pp.92-98, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00978269

N. Ben, . Cir, . Essoussi, N. Ben, C. Cir et al., Overlapping patterns recognition with linear and non-linear separations using positive definite kernels, International Journal of Computer Applications, vol.56, issue.9, pp.1-8, 2012.

P. Bertrand and M. F. Janowitz, The k-weak hierarchical representations: an extension of the indexed closed weak hierarchies, Discrete Applied Mathematics, vol.127, issue.2, pp.199-220, 2003.
DOI : 10.1016/S0166-218X(02)00206-8

D. Billard, L. Billard, and E. Diday, Symbolic Data Analysis : Conceptual Statistics and Data Mining, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00360427

H. Bock, 6. Symbolic Data Analysis, Journal of the Japanese Society of Computational Statistics, vol.15, issue.2, pp.217-229, 2003.
DOI : 10.5183/jjscs1988.15.2_217

URL : https://hal.archives-ouvertes.fr/hal-00544068

. Bordea, SemEval-2015 Task 17: Taxonomy Extraction Evaluation (TExEval), Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), 2015.
DOI : 10.18653/v1/S15-2151

G. Celleux and G. Govaert, Optimal meta search results clustering A classification EM algorithm for clustering and two stochastic versions, Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval, pp.170-177315, 1992.

. Chavent, Trois nouvelles méthodes de classification automatique de données symboliques de type intervalle, pp.5-29, 2003.

. Chou, Symmetry as a new measure for cluster validity, 2nd WSEAS Int. Conf. on Scientific Computation and Soft Computing, pp.209-213, 2002.

C. , L. Chung, K. Lin, and J. , Faster and more robust point symmetry-based k-means algorithm, Pattern Recognition, vol.40, issue.2, pp.410-422, 2007.

. Cimiano, Learning concept hierarchies from text corpora using formal concept anaylsis, Journal of Artificial Intelligence Research, vol.24, pp.305-339, 2005.

. Cimiano, Ontology Learning, Handbook of Ontologies, pp.245-267, 2009.
DOI : 10.1007/978-3-540-92673-3_11

G. Cleuziou and G. Cleuziou, Classification avec recouvrement des classes : une extension des k-moyennes Okm : une extension des k-moyennes pour la recherche de classes recouvrantes, 13èmes rencontres de la Société Francophone de Classification, pp.68-72, 2006.

G. Cleuziou, An extended version of the k-means method for overlapping clustering, 2008 19th International Conference on Pattern Recognition, pp.1-4, 2008.
DOI : 10.1109/ICPR.2008.4761079

URL : https://hal.archives-ouvertes.fr/hal-00466009

G. Cleuziou, Okmed et wokm : deux variantes de okm pour la classification recouvrante, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00466033

G. Cleuziou, F. Guillet, G. Ritschard, D. A. Zighed, H. Briand et al., Two variants of the okm for overlapping clustering Osom : A method for building overlapping topological maps, Studies in Computational Intelligence Pattern Recognition Letters, vol.292, issue.343, pp.149-166239, 2009.

G. Cleuziou, Passage aux noyaux en classification recouvrante, 14èmes Journées Francophones Extraction et Gestion des Connaissances, pp.28-32, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00978273

. Cleuziou, A pretopological framework for the automatic construction of lexical-semantic structures from texts, Proceedings of the 20th ACM international conference on Information and knowledge management, CIKM '11, pp.2453-2456, 2011.
DOI : 10.1145/2063576.2063990

URL : https://hal.archives-ouvertes.fr/hal-00825232

. Cleuziou, QASSIT: A Pretopological Framework for the Automatic Construction of Lexical Taxonomies from Raw Texts, Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), 2015.
DOI : 10.18653/v1/S15-2159

URL : https://hal.archives-ouvertes.fr/hal-01144344

. Cleuziou, . Crémilleux, G. Cleuziou, and B. Crémilleux, Vers une classification conceptuelle recouvrante, 22èmes rencontres de la Société Francophone de Classification, 2015.

. Cleuziou, G. De-carvalho-cleuziou, and F. De-carvalho, Robustesse en classification recouvrante : une approche par trimming, 21èmes rencontres de la Société Francophone de Classification, 2014.

. Cleuziou, Okm-L 1 et comparaison de recouvrements, 19èmes rencontres de la Société Francophone de Classification, 2012.

. Cleuziou, . Dias, G. Cleuziou, G. Dias, G. Cleuziou et al., Apprentissage de mesures de similarité sémantiques : étude d'une variante de la mesure infosimba In first joint meeting of the Société Francophone de Classification and the Classification and Data Analysis Group of the Italian Statistical Society Learning pretopological spaces for lexical taxonomy acquisition, Machine Learning and Knowledge Discovery in Databases -European Conference, ECML PKDD 2015, pp.233-236, 2008.

. Cleuziou, CoFKM: A Centralized Method for Multiple-View Clustering, 2009 Ninth IEEE International Conference on Data Mining, pp.752-757, 2009.
DOI : 10.1109/ICDM.2009.138

URL : https://hal.archives-ouvertes.fr/hal-00460800

. Cleuziou, PoBOC : an Overlapping Clustering Algorithm Application to Rule-Based Classification and Textual Data Kernel Methods for Point Symmetry-based Clustering, Proceedings of the 16th European Conf. on Artificial Intelligence, pp.440-4442812, 2004.

. De-souto, A Comparison of External Clustering Evaluation Indices in the Context of Imbalanced Data Sets, 2012 Brazilian Symposium on Neural Networks, pp.49-54, 2012.
DOI : 10.1109/SBRN.2012.25

URL : https://hal.archives-ouvertes.fr/hal-00976355

. Dempster, Maximum Likelihood from Incomplete Data via the EM Algorithm, Journal of Royal Statistical Society B, vol.39, pp.1-38, 1977.

. Depril, Algorithms for additive clustering of rectangular data tables, Computational Statistics & Data Analysis, vol.52, issue.11, pp.524923-4938, 2008.
DOI : 10.1016/j.csda.2008.04.014

I. S. Dhillon, Kernel k-means, spectral clustering and normalized cuts, pp.551-556, 2004.

D. Marco, D. Navigli, A. Marco, and R. Navigli, Clustering and Diversifying Web Search Results with Graph-Based Word Sense Induction, Computational Linguistics, vol.40, issue.1, pp.709-754, 2013.
DOI : 10.1023/B:MACH.0000027785.44527.d6

. Dias, Topic segmentation algorithms for text summarization and passage retrieval : An exhaustive evaluation, 2007.

. Dias, Informative Polythetic Hierarchical Ephemeral Clustering, 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, pp.104-111, 2011.
DOI : 10.1109/WI-IAT.2011.123

URL : https://hal.archives-ouvertes.fr/hal-00777962

E. Diday, Orders and overlapping clusters by pyramids, 1987.
URL : https://hal.archives-ouvertes.fr/inria-00075822

E. Diday, Introduction á l'analyse des données symboliques, 1989.

. Dupuch, Comparison of Clustering Approaches through Their Application to Pharmacovigilance Terms, In Artificial Intelligence in Medicine, pp.58-67, 2013.
DOI : 10.1007/978-3-642-38326-7_9

[. Urso, Trimmed fuzzy clustering for interval-valued data Advances in Data Analysis and Classification, pp.1-20, 2014.

. Fellows, Graph-based data clustering with overlaps, Discrete Optimization, vol.8, issue.1, pp.2-17, 2011.
DOI : 10.1016/j.disopt.2010.09.006

. Filippone, A survey of kernel and spectral methods for clustering, Pattern Recognition, vol.41, issue.1, pp.176-190, 2008.
DOI : 10.1016/j.patcog.2007.05.018

D. H. Fisher, Knowledge acquisition via incremental conceptual clustering, Machine learning, pp.139-172, 1987.
DOI : 10.1007/BF00114265

. Forestier, Fouille de discussions pour l ?identification de rôles sociaux, p.59, 2010.

E. Forgy, Cluster analysis of multivariate data : Efficiency versus interpretability of classification, Biometrics, vol.21, issue.3, pp.768-769, 1965.

. Fouchal, A clustering method for wireless sensors networks, 2012 IEEE Symposium on Computers and Communications (ISCC), pp.888-000892, 2012.
DOI : 10.1109/ISCC.2012.6249414

URL : https://hal.archives-ouvertes.fr/hal-01132738

B. Fu, Q. Fu, A. Banerjee, W. A. Gale, K. W. Church et al., Multiplicative mixture models for overlapping clustering Identifying word correspondences in parallel texts Robustness properties of k means and trimmed k means, Proceedings of the 8th IEEE International Conference on Data Mining HLT Citeseer. [García-Escudero and Gordaliza, pp.791-796, 1991.

. García-escudero, A review of robust clustering methods, Advances in Data Analysis and Classification, vol.47, issue.Suppl 7, pp.89-109, 2010.
DOI : 10.1007/s11634-010-0064-5

P. Gil-garcía, R. Gil-garcía, and A. Pons-porrata, Dynamic hierarchical algorithms for document clustering, Pattern Recognition Letters, vol.31, issue.6, pp.31469-477, 2010.
DOI : 10.1016/j.patrec.2009.11.011

S. Gregory, A Fast Algorithm to Find Overlapping Communities in Networks, Machine Learning and Knowledge Discovery in Databases, pp.408-423, 2008.
DOI : 10.1007/978-3-540-87479-9_45

. Halkidi, Clustering validity checking methods, ACM SIGMOD Record, vol.31, issue.3, pp.3119-3146, 2002.
DOI : 10.1145/601858.601862

F. Hausdorff, Set theory, 1962.

P. Hearst, M. A. Hearst, and J. O. Pedersen, Reexamining the cluster hypothesis, Proceedings of the 19th annual international ACM SIGIR conference on Research and development in information retrieval , SIGIR '96, pp.76-84, 1996.
DOI : 10.1145/243199.243216

G. Heller, K. Heller, and Z. Ghahramani, A nonparametric bayesian approach to modeling overlapping clusters, Journal of Machine Learning Research, vol.2, pp.187-194, 2007.

T. Heskes, Energy functions for self-organizing maps, 1999.
DOI : 10.1016/B978-044450270-4/50024-3

A. Hubert, L. Hubert, and P. Arabie, Comparing partitions, Journal of Classification, vol.78, issue.1, pp.193-218, 1985.
DOI : 10.1007/BF01908075

O. J. Karst, Linear Curve Fitting Using Least Deviations, Journal of the American Statistical Association, vol.53, issue.281, pp.53118-132, 1958.
DOI : 10.1214/aoms/1177731869

T. Kohonen, Self-Organization and Associative Memory, 1984.
DOI : 10.1007/978-3-642-88163-3

. Kozareva, . Hovy, Z. Kozareva, and E. Hovy, Tailoring the automated construction of large-scale taxonomies using the web, Language Resources and Evaluation, vol.38, issue.5, pp.859-890, 2013.
DOI : 10.1007/s10579-013-9229-0

. Kozareva, Semantic class learning from the web with hyponym pattern linkage graphs, 46th Annual Meeting of the Association for Computational Linguistics : Human Language Technology (ACL-HLT), pp.1048-1056, 2008.

. Kulis, Semi-supervised graph clustering: a kernel approach, Machine Learning, vol.26, issue.2, pp.1-22, 2009.
DOI : 10.1007/s10994-008-5084-4

B. Kulis and M. I. Jordan, Revisiting k-means : New algorithms via bayesian nonparametrics. arXiv preprint, 2011.

. Largeron, C. Bonnevay-]-largeron, and S. Bonnevay, A pretopological approach for structural analysis, Information Sciences, vol.144, issue.1-4, pp.169-185, 2002.
DOI : 10.1016/S0020-0255(02)00189-5

P. Lingras and C. West, Interval Set Clustering of Web Users with Rough K-Means, Journal of Intelligent Information Systems, vol.23, issue.1, pp.5-16, 2004.
DOI : 10.1023/B:JIIS.0000029668.88665.1a

. Lu, Overlapping Clustering with Sparseness Constraints, 2012 IEEE 12th International Conference on Data Mining Workshops, pp.486-494, 2012.
DOI : 10.1109/ICDMW.2012.16

. Masson, . Denoeux, M. Masson, and T. Denoeux, ECM: An evidential version of the fuzzy c-means algorithm, Pattern Recognition, vol.41, issue.4, pp.1384-1397, 2008.
DOI : 10.1016/j.patcog.2007.08.014

. Michalski, . Stepp, R. S. Michalski, and R. E. Stepp, Learning from observation : Conceptual clustering, Machine learning, pp.331-363, 1983.
DOI : 10.1016/b978-0-08-051054-5.50015-7

. Mikolov, Linguistic regularities in continuous space word representations, HLT-NAACL, pp.746-751, 2013.

B. Mirkin, The method of principal clusters, Autom. Remote Control, vol.10, pp.131-143, 1987.

D. Mishra, Discovery of Overlapping Pattern Biclusters from Gene Expression Data using Hash based PSO, Procedia Technology, vol.4, pp.390-394, 2012.
DOI : 10.1016/j.protcy.2012.05.060

]. Babou, H. Moreno, and J. G. , Comparaison de réseaux biologiques Text-Based Ephemeral Clustering for Web Image Retrieval on Mobile Devices (version 1), Nantes, 2012.

. Moreno, Post-retrieval clustering using third-order similarity measures, ACL, pp.153-158, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00931263

. Moreno, Query log driven web search results clustering, Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval, SIGIR '14, pp.777-786, 2014.
DOI : 10.1145/2600428.2609583

URL : https://hal.archives-ouvertes.fr/hal-01070306

V. Navigli, R. Navigli, and P. Velardi, Learning Domain Ontologies from Document Warehouses and Dedicated Web Sites, Computational Linguistics, vol.30, issue.2, pp.151-179, 2004.
DOI : 10.1145/219717.219752

. Osi?ski, Lingo: Search Results Clustering Algorithm Based on Singular Value Decomposition, pp.359-368, 2004.
DOI : 10.1007/978-3-540-39985-8_37

. Paaß, Learning prototype ontologies by hierachical latent semantic analysis, Workshop on Knowledge Discovery and Ontologies at the joint European Conferences on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD), 2004.

. Page, The pagerank citation ranking : Bringing order to the web, 1999.

L. Pantel, P. Pantel, and D. Lin, Discovering word senses from text, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '02, pp.613-619, 2002.
DOI : 10.1145/775047.775138

. Pedersen, WordNet::Similarity, Demonstration Papers at HLT-NAACL 2004 on XX, HLT-NAACL '04, pp.38-41, 2004.
DOI : 10.3115/1614025.1614037

. Pereira, Distributional clustering of English words, Proceedings of the 31st annual meeting on Association for Computational Linguistics -, pp.183-190, 1993.
DOI : 10.3115/981574.981598

. Pérez-suárez, An algorithm based on density and compactness for dynamic overlapping clustering, Pattern Recognition, vol.46, issue.11, pp.463040-3055, 2013.
DOI : 10.1016/j.patcog.2013.03.022

R. , H. Redmond, S. J. Heneghan, and C. , A method for initialising the< i> k</i>-means clustering algorithm using< i> kd</i>-trees, Pattern Recognition Letters, issue.8, pp.28965-973, 2007.

. Régis, Initialization of Masses by the Okm for the Belief Function Theory: Application to System Biology, 2012 26th International Conference on Advanced Information Networking and Applications Workshops, pp.1167-1171, 2012.
DOI : 10.1109/WAINA.2012.222

. Rizoiu, Topic Extraction for Ontology Learning, Ontology Learning and Knowledge Discovery Using the Web : Challenges and Recent Advances, pp.38-61, 2011.
DOI : 10.4018/978-1-60960-625-1.ch003

URL : https://hal.archives-ouvertes.fr/hal-00590557

. Sakai, Summary of the NTCIR-10 INTENT-2 task, Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval, SIGIR '13, pp.761-764, 2013.
DOI : 10.1145/2484028.2484104

. Sanderson, . Croft, M. Sanderson, and B. Croft, Deriving concept hierarchies from text, Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval , SIGIR '99, pp.206-213, 1999.
DOI : 10.1145/312624.312679

URL : http://ciir.cs.umass.edu/pubfiles/ir-156.pdf

. Scaiella, Topical clustering of search results, Proceedings of the fifth ACM international conference on Web search and data mining, WSDM '12, pp.223-232, 2012.
DOI : 10.1145/2124295.2124324

. Schwarz, Estimating the dimension of a model. The annals of statistics, pp.461-464, 1978.

. Segal, DECOMPOSING GENE EXPRESSION INTO CELLULAR PROCESSES, Biocomputing 2003, pp.89-100, 2003.
DOI : 10.1142/9789812776303_0009

. Shepard, R. N. Shepard, and P. Arabie, Additive clustering: Representation of similarities as combinations of discrete overlapping properties., Psychological Review, vol.86, issue.2, pp.87-123, 1979.
DOI : 10.1037/0033-295X.86.2.87

. Snoek, The challenge problem for automated detection of 101 semantic concepts in multimedia Semantic taxonomy induction from heterogenous evidence Association for Computational Linguis- tics, Proceedings of the 14th annual ACM international conference on Multimedia, MULTIMEDIA '06 ACM. [Snow et al. ACL '06 : Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the ACL, pp.421-430, 2006.

C. Su, M. Su, and C. Chou, A modified version of the kmeans algorithm with a distance based on cluster symmetry, IEEE Transactions on pattern analysis and machine intelligence, vol.23, issue.6, pp.674-680, 2001.

J. Sublemontier, Classification non supervisée : de la multiplicité des données à la multiplicité des analyses, 2012.

J. Sublemontier, Unsupervised collaborative boosting of clustering: An unifying framework for multi-view clustering, multiple consensus clusterings and alternative clustering, The 2013 International Joint Conference on Neural Networks (IJCNN), 2013.
DOI : 10.1109/IJCNN.2013.6706911

URL : https://hal.archives-ouvertes.fr/hal-00813201

L. Tang and H. Liu, Scalable learning of collective behavior based on sparse social dimensions, Proceeding of the 18th ACM conference on Information and knowledge management, CIKM '09, pp.1107-1116, 2009.
DOI : 10.1145/1645953.1646094

. Tsoumakas, Mulan : A java library for multi-label learning, Journal of Machine Learning Research, vol.12, pp.2411-2414, 2011.

. Velardi, OntoLearn Reloaded: A Graph-Based Algorithm for Taxonomy Induction, Computational Linguistics, vol.3, issue.1, pp.665-707, 2013.
DOI : 10.1109/ICCSIT.2009.5234687

. Wang, Discovering Overlapping Groups in Social Media, 2010 IEEE International Conference on Data Mining, pp.569-578, 2010.
DOI : 10.1109/ICDM.2010.48

. Whang, Nonexhaustive , overlapping k-means, proceedings of the SIAM International Conference on Data Mining (SDM) -to appear, 2015.

. Wieczorkowska, Multilabel classification of emotions in music, Intelligent Information Processing and Web Mining of Advances in Soft Computing, pp.307-315, 2006.

. Wu, Top 10 algorithms in data mining, Knowledge and Information Systems, vol.9, issue.2, pp.1-37, 2008.
DOI : 10.1007/s10115-007-0114-2

H. Yang and J. Callan, A metric-based framework for automatic taxonomy induction, Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 1, ACL-IJCNLP '09, pp.271-279, 2009.
DOI : 10.3115/1687878.1687918

. Youssef, Overlapping multihop clustering for wireless sensor networks. Parallel and Distributed Systems, IEEE Transactions on, vol.20, issue.12, pp.1844-1856, 2009.

E. Zamir, O. Zamir, and O. Etzioni, Web document clustering, Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval , SIGIR '98, pp.46-54, 1998.
DOI : 10.1145/290941.290956

. Zeng, Learning to cluster web search results, Proceedings of the 27th annual international conference on Research and development in information retrieval , SIGIR '04, pp.210-217, 2004.
DOI : 10.1145/1008992.1009030