The effect of adsorbed polymer on the elastic moduli of surfactant bilayers - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal de Physique II Année : 1991

The effect of adsorbed polymer on the elastic moduli of surfactant bilayers

J. Brooks
  • Fonction : Auteur
C. Marques
  • Fonction : Auteur
M. Cates
  • Fonction : Auteur

Résumé

We study theoretically the effect of adsorbed homopolymer on surfactant bilayers, restricting ourselves to homogeneous equilibrium adsorption of polymer on both sides of the bilayer, with no penetration. We formulate the energy of adsorption per unit area as a Taylor series in curvature for both spherical and cylindrical surfaces. In the limit of weak adsorption analytic expressions for the polymeric contribution to the mean and Gaussian elastic moduli of the bilayer are derived, using both a mean-field and a scaling functional approach. For stronger adsorption numerical calculations have been made, and in the limit of very strong adsorption, asymptotic functional forms for the elastic moduli found. In all cases the presence of the polymer leads to a decrease in the mean curvature rigidity K and an increase in the Gaussian rigidity $\bar {K}$. At the mean-field level these contributions are always small compared to the thermal energy kB T. However the scaling theory predicts qualitatively similar, but quantitatively larger effects; thus the presence of adsorbed polymer can strongly influence the elasticity of surfactant bilayers.

Domaines

Articles anciens
Fichier principal
Vignette du fichier
ajp-jp2v1p673.pdf (1007.54 Ko) Télécharger le fichier
Origine : Accord explicite pour ce dépôt

Dates et versions

jpa-00247549 , version 1 (04-02-2008)

Identifiants

Citer

J. Brooks, C. Marques, M. Cates. The effect of adsorbed polymer on the elastic moduli of surfactant bilayers. Journal de Physique II, 1991, 1 (6), pp.673-690. ⟨10.1051/jp2:1991198⟩. ⟨jpa-00247549⟩

Collections

AJP
32 Consultations
58 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More