A MATHEMATICAL MODEL OF THE SILICON CHEMICAL VAPOR DEPOSITION IN A ATMOSPHERIC PRESSURE COLD-WALL REACTOR - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal de Physique Colloques Année : 1989

A MATHEMATICAL MODEL OF THE SILICON CHEMICAL VAPOR DEPOSITION IN A ATMOSPHERIC PRESSURE COLD-WALL REACTOR

Y. Park
  • Fonction : Auteur
G. Min
  • Fonction : Auteur
C. Park
  • Fonction : Auteur
J. Chun
  • Fonction : Auteur

Résumé

The deposition of polycrystalline and amorphous silicon from SiH4-H2 and SiH4-CH4- H2 system has been studied. Deposition temperature between 600 and 850°C have been used in a atmospheric pressure reactor. It is found that the deposition rate of silicon in SiH4-CH4-H2 system is reduced by about half SiH4-H2 system. Therefore, to investigate the effect of CH4 in silicon deposition we describe numerical models of the gas-phase hydrodynamics and chemical kinetics. The chemical kinetic model, which includes a 16-step elementary reaction mechanism in SiH4-H2 system and a 32-step in SiH4-CH4-H2 system for the thermal decomposition of silane, predicts chemical species concentration profiles and fluid dynamical simulation predicts gas-phase temperature and velocity profiles. The chemical kinetic calculations indicate significant differences in the levels of silicon species for SiH4-H2 system versus SiH4-CH4-H2 system and decomposition of SiH2 is important in describing silicon chemical vapor deposition.

Domaines

Articles anciens
Fichier principal
Vignette du fichier
ajp-jphyscol198950C508.pdf (26.44 Ko) Télécharger le fichier
Origine : Accord explicite pour ce dépôt

Dates et versions

jpa-00229531 , version 1 (04-02-2008)

Identifiants

Citer

Y. Park, G. Min, C. Park, J. Chun. A MATHEMATICAL MODEL OF THE SILICON CHEMICAL VAPOR DEPOSITION IN A ATMOSPHERIC PRESSURE COLD-WALL REACTOR. Journal de Physique Colloques, 1989, 50 (C5), pp.C5-45-C5-45. ⟨10.1051/jphyscol:1989508⟩. ⟨jpa-00229531⟩

Collections

AJP
20 Consultations
24 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More