Skip to Main content Skip to Navigation
New interface
Journal articles

A Bayesian Approach to Morphological Models Characterization

Abstract : Morphological models are commonly used to describe microstructures observed in heterogeneous materials. Usually, these models depend upon a set of parameters that must be chosen carefully to match experimental observations conducted on the microstructure. A common approach to perform the parameters determination is to try to minimize an objective function, usually taken to be the discrepancy between measurements computed on the simulations and on the experimental observations, respectively. In this article, we present a Bayesian approach for determining the parameters of morphological models, based upon the definition of a posterior distribution for the parameters. A Monte Carlo Markov Chains (MCMC) algorithm is then used to generate samples from the posterior distribution and to identify a set of optimal parameters. We show on several examples that the Bayesian approach allows us to properly identify the optimal parameters of distinct morphological models and to identify potential correlations between the parameters of the models.
Document type :
Journal articles
Complete list of metadata
Contributor : François Willot Connect in order to contact the contributor
Submitted on : Tuesday, January 4, 2022 - 1:49:44 PM
Last modification on : Saturday, October 22, 2022 - 5:15:21 AM


Publisher files allowed on an open archive



Bruno Figliuzzi, Antoine Montaux-Lambert, François Willot, Grégoire Naudin, Pierre Dupuis, et al.. A Bayesian Approach to Morphological Models Characterization. Image Analysis & Stereology, 2021, 40 (3), pp.171-180. ⟨10.5566/ias.2641⟩. ⟨hal-03510046⟩



Record views


Files downloads