Amino acids activate mTORC1 to release roe deer embryos from decelerated proliferation during diapause - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Proceedings of the National Academy of Sciences of the United States of America Année : 2021

Amino acids activate mTORC1 to release roe deer embryos from decelerated proliferation during diapause

Résumé

Embryonic diapause in mammals leads to a reversible developmental arrest. While completely halted in many species, European roe deer ( Capreolus capreolus ) embryos display a continuous deceleration of proliferation. During a 4-mo period, the cell doubling time is 2 to 3 wk. During this period, the preimplantation blastocyst reaches a diameter of 4 mm, after which it resumes a fast developmental pace to subsequently implant. The mechanisms regulating this notable deceleration and reacceleration upon developmental resumption are unclear. We propose that amino acids of maternal origin drive the embryonic developmental pace. A pronounced change in the abundance of uterine fluid mTORC1-activating amino acids coincided with an increase in embryonic mTORC1 activity prior to the resumption of development. Concurrently, genes related to the glycolytic and phosphate pentose pathway, the TCA cycle, and one carbon metabolism were up-regulated. Furthermore, the uterine luminal epithelial transcriptome indicated increased estradiol-17β signaling, which likely regulates the endometrial secretions adapting to the embryonic needs. While mTORC1 was predicted to be inactive during diapause, the residual embryonic mTORC2 activity may indicate its involvement in maintaining the low yet continuous proliferation rate during diapause. Collectively, we emphasize the role of nutrient signaling in preimplantation embryo development. We propose selective mTORC1 inhibition via uterine catecholestrogens and let-7 as a mechanism regulating slow stem cell cycle progression.
Fichier principal
Vignette du fichier
pnas.2100500118.pdf (1.95 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03328227 , version 1 (31-05-2022)

Licence

Paternité

Identifiants

Citer

Vera van Der Weijden, Jochen Bick, Stefan Bauersachs, Anna Rüegg, Thomas Hildebrandt, et al.. Amino acids activate mTORC1 to release roe deer embryos from decelerated proliferation during diapause. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 (35), pp.e2100500118. ⟨10.1073/pnas.2100500118⟩. ⟨hal-03328227⟩
73 Consultations
17 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More