Skip to Main content Skip to Navigation
New interface
Journal articles

Performance Evaluation of Low-Complexity Algorithms for Orthogonal Time-Frequency Space Modulation

Abstract : Data transmission in wireless systems brings numerous challenges, especially when it involves propagating in a multipath scenario over rapidly time-varying channels. In this context, Orthogonal Time-Frequency Space (OTFS) modulation has been recently proposed to work with time-frequency selective channels with high Doppler. In this modulation, the symbols are first multiplexed in a delay-Doppler domain rather than in the time-frequency domain used by Orthogonal Frequency Division Multiplexing (OFDM). The studies point out advantages of OTFS performance over OFDM in many aspects, such as data rate increase in high mobility. Another advantage is the sparsity of the channel produced by OTFS that allows using lowcomplexity algorithms for the detection of the data. In this paper, the performance of OTFS modulation in a doubly dispersive channel is evaluated with several low-complexity variants of the message passing algorithm (MPA) in terms of complexity and Bit Error Rate (BER) performance. The results show that MPA and Approximate Message Passing simplified by Expectation Propagation (AMP-EP) algorithms achieve higher performance. However, when taking into account both complexity and BER performance, AMP simplified by First-Order (AMP-FO) achieves the best performance-complexity tradeoff.
Document type :
Journal articles
Complete list of metadata
Contributor : Didier Le Ruyet Connect in order to contact the contributor
Submitted on : Tuesday, December 8, 2020 - 10:58:07 AM
Last modification on : Wednesday, September 28, 2022 - 5:57:19 AM
Long-term archiving on: : Tuesday, March 9, 2021 - 6:57:50 PM


Publisher files allowed on an open archive




Dayse Bandeira, Didier Le Ruyet, Mylene Pischella, João Mota. Performance Evaluation of Low-Complexity Algorithms for Orthogonal Time-Frequency Space Modulation. Journal of Communication and Information Systems, 2020, 35 (1), pp.138-149. ⟨10.14209/jcis.2020.15⟩. ⟨hal-03026587⟩



Record views


Files downloads