X. Cao, COVID-19: immunopathology and its implications for therapy, Nature Reviews Immunology, vol.20, issue.5, pp.269-270, 2020.

L. R. Baden and E. J. Rubin, Covid-19 ? The Search for Effective Therapy, New England Journal of Medicine, vol.382, issue.19, pp.1851-1852, 2020.

N. V. Loayza and S. Pennings, Macroeconomic Policy in the Time of COVID-19, World Bank Research & Policy Briefs, issue.28, 2020.

T. Hale, A. J. Hale, B. Kira, A. Petherick, T. Phillips et al., Global Assessment of the Relationship between Government Response Measures and COVID-19 Deaths, 2020.

T. Hale, A. J. Hale, B. Kira, A. Petherick, T. Phillips et al., Global Assessment of the Relationship between Government Response Measures and COVID-19 Deaths, Blavatnik School of Government, 2020.

A. Glover, J. Heathcote, D. Krueger, and J. Rios-rull, Health versus Wealth: On the Distributional Effects of Controlling a Pandemic, 2020.

N. Ferguson, D. Laydon, G. Gilani, N. Imai, K. Ainslie et al., Impact of non-pharmaceutical interventions (NPIs) to reduce covid19 mortality and healthcare demand, Imperial College London, vol.9, 2020.

P. Walker, C. Whittaker, O. Watson, M. Baguelin, K. Ainslie et al., The global impact of COVID-19 and strategies for mitigation and suppression, Report, vol.12, 2020.

W. O. Kermack and A. G. Mckendrick, A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol.115, issue.772, pp.700-721, 1927.

H. Hethcote, The Mathematics of Infectious Diseases, SIAM Review, vol.42, issue.4, pp.599-653, 2000.

G. Massonis and A. F. Villaverde, Finding and Breaking Lie Symmetries: Implications for Structural Identifiability and Observability in Biological Modelling, Symmetry, vol.12, issue.3, p.469, 2020.

A. Khanafer, T. Ba?ar, and B. Gharesifard, Stability of epidemic models over directed graphs: A positive systems approach, Automatica, vol.74, pp.126-134, 2016.

P. E. Paré, C. L. Beck, and A. Nedi?, Epidemic processes over time-varying networks, IEEE Transactions on Control of Network Systems, vol.5, issue.3, pp.1322-1334, 2018.

P. E. Paré, J. Liu, C. L. Beck, B. E. Kirwan, and T. Ba?ar, Analysis, estimation, and validation of discrete-time epidemic processes, IEEE Transactions on Control Systems Technology, vol.28, issue.1, pp.79-93, 2018.

V. Colizza and A. Vespignani, Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations, Journal of Theoretical Biology, vol.251, issue.3, pp.450-467, 2008.

R. Pastor-satorras, C. Castellano, P. Van-mieghem, and A. Vespignani, Epidemic processes in complex networks, Reviews of Modern Physics, vol.87, issue.3, pp.925-979, 2015.

F. Della-rossa, D. Salzano, A. Di-meglio, F. De-lellis, M. Coraggio et al., A network model of Italy shows that intermittent regional strategies can alleviate the COVID-19 epidemic, Nature Communications, vol.11, issue.1, pp.1-9, 2020.

Q. Lin, S. Zhao, D. Gao, Y. Lou, S. Yang et al., A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action, International Journal of Infectious Diseases, vol.93, pp.211-216, 2020.

C. Anastassopoulou, L. Russo, A. Tsakris, and C. Siettos, Data-based analysis, modelling and forecasting of the COVID-19 outbreak, PLOS ONE, vol.15, issue.3, p.e0230405, 2020.

G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di-filippo et al., Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nature Medicine, vol.26, issue.6, pp.855-860, 2020.

Z. Liu, P. Magal, O. Seydi, and G. Webb, Understanding Unreported Cases in the COVID-19 Epidemic Outbreak in Wuhan, China, and the Importance of Major Public Health Interventions, Biology, vol.9, issue.3, p.50, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02888020

A. Ducrot, P. Magal, T. Nguyen, and G. F. Webb, Identifying the number of unreported cases in SIR epidemic models, Mathematical Medicine and Biology: A Journal of the IMA, vol.37, issue.2, pp.243-261, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02888040

J. Köhler, L. Schwenkel, A. Koch, J. Berberich, P. Pauli et al., Robust and optimal predictive control of the COVID-19 outbreak, 2020.

M. M. Morato, S. B. Bastos, D. O. Cajueiro, and J. E. Normey-rico, An optimal predictive control strategy for COVID-19 (SARS-CoV-2) social distancing policies in Brazil, Annual Reviews in Control, 2020.

A. Perkins and G. Espana, Optimal control of the COVID-19 pandemic with non-pharmaceutical interventions, 2020.

F. Casella, Can the COVID-19 Epidemic Be Controlled on the Basis of Daily Test Reports?, IEEE Control Systems Letters, vol.5, issue.3, pp.1079-1084, 2021.

L. E. Olivier, S. Botha, and I. K. Craig, South African COVID-19 lockdown vexations will persist, 2020.

F. E. Alvarez, D. Argente, and F. Lippi, A Simple Planning Problem for COVID-19 Lockdown, 2020.

D. Acemoglu, V. Chernozhukov, I. Werning, and M. D. Whinston, Optimal Targeted Lockdowns in a Multi-Group SIR Model, 2020.

L. Brotherhood, P. Kircher, C. Santos, and M. Tertilt, An economic model of the COVID-19 epidemic: The importance of testing and age-specific policies, CESifo Working Paper, issue.8316, 2020.

P. Romagnani, G. Gnone, F. Guzzi, S. Negrini, A. Guastalla et al., The COVID-19 infection: lessons from the Italian experience, Journal of Public Health Policy, vol.41, issue.3, pp.238-244, 2020.

M. Day, Covid-19: identifying and isolating asymptomatic people helped eliminate virus in Italian village, BMJ, p.m1165, 2020.

, FDA authorizes emergency use of first Ebola fingerstick test with portable reader, Case Medical Research, 2018.

D. De-walque, J. Friedman, R. Gatti, and A. Mattoo, How Two Tests Can Help Contain COVID-19 and Revive the Economy, World Bank Research & Policy Briefs, issue.29, 2020.

A. K. Winter and S. T. Hegde, The important role of serology for COVID-19 control, The Lancet Infectious Diseases, vol.20, issue.7, pp.758-759, 2020.

, Public Health England will not change point-of-care COVID-19 antibody testing advice, despite SAGE evidence, The Pharmaceutical Journal, 2020.

M. S. Eichenbaum, S. Rebelo, and M. Trabandt, The Macroeconomics of Testing and Quarantining, 2020.

M. Salath, C. L. Althaus, R. Neher, S. Stringhini, E. Hodcroft et al., COVID-19 epidemic in Switzerland: on the importance of testing, contact tracing and isolation, Swiss Medical Weekly, vol.150, p.20225, 2020.

G. Chowell, P. W. Fenimore, M. A. Castillo-garsow, and C. Castillo-chavez, SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism, Journal of Theoretical Biology, vol.224, issue.1, pp.1-8, 2003.

C. Nowzari, V. M. Preciado, and G. J. Pappas, Analysis and Control of Epidemics: A Survey of Spreading Processes on Complex Networks, IEEE Control Systems, vol.36, issue.1, pp.26-46, 2016.

C. Nowzari, V. M. Preciado, and G. J. Pappas, Optimal Resource Allocation for Control of Networked Epidemic Models, IEEE Transactions on Control of Network Systems, vol.4, issue.2, pp.159-169, 2017.

M. Pezzutto, E. Garone, and L. Schenato, Reference Governor for Constrained Control Over Lossy Channels, IEEE Control Systems Letters, vol.4, issue.2, pp.271-276, 2020.

J. Ely, A. Galeotti, and J. Steiner, Optimal test allocation, Tech. rep, 2020.

F. Piguillem and L. Shi, Optimal COVID-19 quarantine and testing policies, CEPR Discussion Paper No. DP14613, 2020.

D. Berger, K. Herkenhoff, and S. Mongey, An SEIR Infectious Disease Model with Testing and Conditional Quarantine, 2020.

A. Charpentier, R. Elie, M. Laurière, and V. C. Tran, COVID-19 pandemic control: balancing detection policy and lockdown intervention under ICU sustainability, COVID-19 pandemic control: Balancing detection policy and lockdown intervention under ICU sustainability, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02572966

K. J. Rothman, S. Greenland, and T. L. Lash, 3 Epidemiologic Study Designs, Handbook of Statistics, pp.64-108, 2007.

P. Van-den-driessche and J. Watmough, Further Notes on the Basic Reproduction Number, Mathematical Epidemiology, pp.159-178, 2008.

J. Oh, J. Lee, D. Schwarz, H. L. Ratcliffe, J. F. Markuns et al., National Response to COVID-19 in the Republic of Korea and Lessons Learned for Other Countries, Health Systems & Reform, vol.6, issue.1, p.e1753464, 2020.

L. Ljung, System Identification: Theory for the user, 1999.

O. Nelles, Nonlinear System Identification, 2020.

J. Kennedy and R. Eberhart, Particle swarm optimization, Proceedings of ICNN'95 - International Conference on Neural Networks, vol.4, pp.1942-1948

S. A. Lauer, K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng et al., The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application, Annals of Internal Medicine, vol.172, issue.9, pp.577-582, 2020.

F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu et al., Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study, The Lancet, vol.395, issue.10229, pp.1054-1062, 2020.

M. Clerc and J. Kennedy, The particle swarm - explosion, stability, and convergence in a multidimensional complex space, IEEE Transactions on Evolutionary Computation, vol.6, issue.1, pp.58-73, 2002.

R. Poli, J. Kennedy, and T. Blackwell, Particle swarm optimization, Swarm Intelligence, vol.1, issue.1, pp.33-57, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01570317

Z. Zhan, J. Zhang, Y. Li, and H. S. Chung, Adaptive particle swarm optimization, IEEE Transactions on Systems, Man, and Cybernetics, vol.39, issue.6, pp.1362-1381, 2009.