B. L. Jacobs and E. C. Azmitia, Structure and function of the brain serotonin system, Physiol. Rev, vol.72, pp.165-229, 1992.

P. W. Andrews, A. Bharwani, K. R. Lee, M. Fox, J. A. Thomson et al., Is serotonin an upper or a downer? The evolution of the serotonergic system and its role in depression and the antidepressant response, Neurosci. Biobehav. Rev, vol.51, pp.164-188, 2015.

P. Blier, C. De-montigny, and Y. Chaput, A role for the serotonin system in the mechanism of action of antidepressant treatments: Preclinical evidence, J. Clin. Psychiatry, vol.51, pp.14-20, 1990.

M. Hamon and P. Blier, Monoamine neurocircuitry in depression and strategies for new treatments, Prog. Neuro Psychopharmacol. Biol. Psychiatry, vol.45, pp.54-63, 2013.

P. Soubrié, Reconciling the role of central serotonin neurons in human and animal behavior, Behav. Brain Sci, vol.9, pp.319-335, 1986.

A. Bari and T. W. Robbins, Inhibition and impulsivity: Behavioral and neural basis of response control, Prog. Neurobiol, vol.108, pp.44-79, 2013.

P. Gaspar and C. Lillesaar, Probing the diversity of serotonin neurons, Philos. Trans. R.Soc. Lond. Ser. B Biol. Sci, vol.367, pp.2382-2394, 2012.

O. V. Alekseyenko, Y. B. Chan, M. P. Fernandez, T. Bulow, M. J. Pankratz et al., Single serotonergic neurons that modulate aggression in Drosophila, Curr. Biol. CB, vol.24, pp.2700-2707, 2014.

F. F. De-miguel and C. Trueta, Synaptic and extrasynaptic secretion of serotonin, Cell. Mol. Neurobiol, vol.25, pp.297-312, 2005.

A. Dahlström and K. Fuxe, Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons, Acta Physiol. Scand, vol.62, pp.1-55, 1964.

H. G. Lidov and M. E. Molliver, Immunohistochemical study of the development of serotonergic neurons in the rat CNS, Brain Res. Bull, vol.9, pp.559-604, 1982.

M. W. Hale and C. A. Lowry, Functional topography of midbrain and pontine serotonergic systems: Implications for synaptic regulation of serotonergic circuits, Psychopharmacology, vol.213, pp.243-264, 2011.

H. W. Steinbusch, Serotonin-immunoreactive neurons and their projections in the CNS. In Handbook of Chemical Neuroanatomy -Classical Transmitters and Transmitters Receptors in the CNS Part II

A. H. Björklund and M. J. Kuhar, , pp.68-125, 1984.

E. P. Walker, P. Tadi, N. Neuroanatomy, and . Raphe,

S. Publishing and L. , , 2020.

B. Weissbourd, J. Ren, K. E. Deloach, C. J. Guenthner, K. Miyamichi et al., Presynaptic partners of dorsal raphe serotonergic and GABAergic neurons, Neuron, vol.83, pp.645-662, 2014.

X. Bao, B. Wang, J. Zhang, T. Yan, W. Yang et al., Localization of serotonin/tryptophan-hydroxylase-immunoreactive cells in the brain and suboesophageal ganglion of Drosophila melanogaster, Cell Tissue Res, vol.340, pp.51-59, 2010.

S. Wurden and U. Homberg, Immunocytochemical mapping of serotonin and neuropeptides in the accessory medulla of the locust, Schistocerca gregaria, J. Comp. Neurol, vol.362, pp.305-319, 1995.

B. L. Antonsen and D. H. Paul, Serotonergic and octopaminergic systems in the squat lobster Munida quadrispina (Anomura, Galatheidae), J. Comp. Neurol, vol.439, pp.450-468, 2001.

N. Vazquez-acevedo, D. Reyes-colon, E. A. Ruiz-rodriguez, N. M. Rivera, J. Rosenthal et al., Cloning and immunoreactivity of the 5-HT 1Mac and 5-HT 2Mac receptors in the central nervous system of the freshwater prawn Macrobrachium rosenbergii, J. Comp. Neurol, vol.513, pp.399-416, 2009.

D. Real and G. Czternasty, Mapping of serotonin-like immunoreactivity in the ventral nerve cord of crayfish, Brain Res, vol.521, pp.203-212, 1990.

F. A. Issa, J. Drummond, D. Cattaert, and D. H. Edwards, Neural circuit reconfiguration by social status, J. Neurosci, vol.32, pp.5638-5645, 2012.

D. Umbriaco, M. Anctil, and L. Descarries, Serotonin-immunoreactive neurons in the cnidarian Renilla koellikeri, J. Comp. Neurol, vol.291, pp.167-178, 1990.

L. C. Daws, Unfaithful neurotransmitter transporters: Focus on serotonin uptake and implications for antidepressant efficacy, Pharmacol. Ther, vol.121, pp.89-99, 2009.

K. Elekes and R. Hustert, The efferent innervation of the genital chamber by an identified serotonergic neuron in the female cricket Acheta domestica, Cell Tissue Res, vol.252, pp.449-457, 1988.

D. J. Walther, J. U. Peter, S. Bashammakh, H. Hortnagl, M. Voits et al., Synthesis of serotonin by a second tryptophan hydroxylase isoform, Science, vol.299, p.76, 2003.

X. Zhang, J. M. Beaulieu, T. D. Sotnikova, R. R. Gainetdinov, and M. G. Caron, Tryptophan hydroxylase-2 controls brain serotonin synthesis, Science, vol.305, 2004.

C. M. Coleman and W. S. Neckameyer, Serotonin synthesis by two distinct enzymes in Drosophila melanogaster, Arch. Insect. Biochem. Physiol, vol.59, pp.12-31, 2005.

P. De-deurwaerdere, C. Binda, R. Corne, C. Leone, A. Valeri et al., Comparative Analysis of the Neurochemical Profile and MAO Inhibition Properties of N-(Furan-2-ylmethyl)-N-methylprop-2-yn-1-amine, ACS Chem. Neurosci, vol.8, pp.1026-1035, 2017.

J. P. Finberg, Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: Focus on modulation of CNS monoamine neurotransmitter release, Pharmacol. Ther, vol.143, pp.133-152, 2014.

D. Giovanni, G. Svob-strac, D. Sole, M. Unzeta, M. Tipton et al., Monoaminergic and Histaminergic Strategies and Treatments in Brain Diseases, Front. Neurosci, vol.10, p.541, 2016.

P. Fossat, J. Bacque-cazenave, P. De-deurwaerdere, D. Cattaert, J. P. Delbecque et al., but not dopamine, controls the stress response and anxiety-like behavior in the crayfish Procambarus clarkii, J. Exp. Biol, vol.218, pp.2745-2752, 2015.

P. Fossat, J. Bacque-cazenave, P. De-deurwaerdere, J. P. Delbecque, and D. Cattaert, Comparative behavior. Anxiety-like behavior in crayfish is controlled by serotonin, Science, vol.344, pp.1293-1297, 2014.

A. Chagraoui, S. Whitestone, L. Baassiri, J. Manem, G. Di-giovanni et al., Neurochemical impact of the 5-HT2C receptor agonist WAY-163909 on monoamine tissue content in the rat brain, Neurochem. Int, vol.124, pp.245-255, 2019.

A. Fitoussi, F. Dellu-hagedorn, and P. De-deurwaerdere, Monoamines tissue content analysis reveals restricted and site-specific correlations in brain regions involved in cognition, Neuroscience, vol.255, pp.233-245, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01377302

C. Hyacinthe, P. De-deurwaerdere, T. Thiollier, Q. Li, E. Bezard et al., Blood withdrawal affects iron store dynamics in primates with consequences on monoaminergic system function, Neuroscience, vol.290, pp.621-635, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01214572

C. Pifl, G. Schingnitz, and O. Hornykiewicz, Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on the regional distribution of brain monoamines in the rhesus monkey, Neuroscience, vol.44, pp.591-605, 1991.

E. Puginier, R. Bharatiya, A. Chagraoui, J. Manem, Y. H. Cho et al., Early neurochemical modifications of monoaminergic systems in the R6/1 mouse model of Huntington's disease, Neurochem. Int, vol.128, pp.186-195, 2019.

M. S. Kops, J. B. Kjaer, O. Gunturkun, K. G. Westphal, G. A. Korte-bouws et al., Brain monoamine levels and behaviour of young and adult chickens genetically selected on feather pecking, Behav. Brain Res, vol.327, pp.11-20, 2017.

D. Abreu, M. S. Messias, J. P. Thornqvist, P. O. Winberg, S. Soares et al., The variable monoaminergic outcomes of cleaner fish brains when facing different social and mutualistic contexts, PeerJ, vol.6, 2018.

M. S. Klouche, P. De-deurwaerdere, F. Dellu-hagedorn, N. Lakhdar-ghazal, and S. Benomar, Monoamine content during the reproductive cycle of Perna perna depends on site of origin on the, Atlantic Coast of Morocco. Sci. Rep, vol.5, 2015.

D. Hoyer, J. P. Hannon, and G. R. Martin, Molecular, pharmacological and functional diversity of 5-HT receptors, Pharmacol. Biochem. Behav, vol.71, pp.533-554, 2002.

S. J. Peroutka and T. A. Howell, The molecular evolution of G protein-coupled receptors: Focus on 5-hydroxytryptamine receptors, Neuropharmacology, vol.33, pp.319-324, 1994.

F. Saudou, Hen, R. 5-Hydroxytryptamine receptor subtypes in vertebrates and invertebrates, Neurochem. Int, vol.25, pp.503-532, 1994.

M. C. Clark, T. E. Dever, J. J. Dever, P. Xu, V. Rehder et al., Arthropod 5-HT2 receptors: A neurohormonal receptor in decapod crustaceans that displays agonist independent activity resulting from an evolutionary alteration to the DRY motif, J. Neurosci, vol.24, pp.3421-3435, 2004.

N. Spitzer, D. H. Edwards, and D. J. Baro, Conservation of structure, signaling and pharmacology between two serotonin receptor subtypes from decapod crustaceans, Panulirus interruptus and Procambarus clarkii, J. Exp. Biol, vol.211, pp.92-105, 2008.

X. Yang, G. Huang, M. Xu, C. Zhang, and Y. Cheng, Molecular cloning and functional expression of the 5-HT7 receptor in Chinese mitten crab (Eriocheir sinensis), Comp. Biochem. Physiol. B Biochem. Mol. Biol, vol.226, pp.10-17, 2018.

V. A. Straub and P. R. Benjamin, Extrinsic modulation and motor pattern generation in a feeding network: A cellular study, J. Neurosci. Off. J. Soc. Neurosci, vol.21, pp.1767-1778, 2001.

M. S. Yeoman, M. J. Brierley, and P. R. Benjamin, Central pattern generator interneurons are targets for the modulatory serotonergic cerebral giant cells in the feeding system of Lymnaea, J. Neurophysiol, vol.75, pp.11-25, 1996.

Y. S. Lee, S. L. Choi, S. H. Lee, H. Kim, H. Park et al., Identification of a serotonin receptor coupled to adenylyl cyclase involved in learning-related heterosynaptic facilitation in Aplysia, Proc. Natl. Acad. Sci, vol.106, pp.14634-14639, 2009.

S. Mapara, S. Parries, C. Quarrington, K. C. Ahn, W. J. Gallin et al., Identification, molecular structure and expression of two cloned serotonin receptors from the pond snail, Helisoma trivolvis, J. Exp. Biol, vol.211, pp.900-910, 2008.

M. A. Sosa, N. Spitzer, D. H. Edwards, and D. J. Baro, A crustacean serotonin receptor: Cloning and distribution in the thoracic ganglia of crayfish and freshwater prawn, J. Comp. Neurol, vol.473, pp.526-537, 2004.

J. Bacque-cazenave, F. A. Issa, D. H. Edwards, and D. Cattaert, Spatial segregation of excitatory and inhibitory effects of 5-HT on crayfish motoneurons, J. Neurophysiol, vol.109, pp.2793-2802, 2013.

A. J. Tierney, Invertebrate serotonin receptors: A molecular perspective on classification and pharmacology, J. Exp. Biol, vol.221, 2018.

M. Thamm, S. Balfanz, R. Scheiner, A. Baumann, and W. Blenau, Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior, Cell. Mol. Life Sci, vol.67, pp.2467-2479, 2010.

R. Vleugels, C. Lenaerts, A. Baumann, J. Vanden-broeck, and H. Verlinden, Pharmacological characterization of a 5-HT1-type serotonin receptor in the red flour beetle, Tribolium castaneum, PLoS ONE, vol.8, 2013.

B. Troppmann, S. Balfanz, A. Baumann, and W. Blenau, Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor, Br. J. Pharmacol, vol.159, pp.1450-1462, 2010.

D. Giovanni, G. C. Bharatiya, R. De-deurwaerdère, and P. , Serotonergic control of excitability: From neuron to networks, In Handbook of the Behavioral Neurobiology of Serotonin

C. C. Muller and . Ed, , vol.31, 2020.

N. Patocka, N. Sharma, M. Rashid, and P. Ribeiro, Serotonin signaling in Schistosoma mansoni: A serotonin-activated G protein-coupled receptor controls parasite movement, PLoS Pathog, vol.10, 2014.

J. Bielecki, G. Nachman, and A. Garm, Swim pacemaker response to bath applied neurotransmitters in the cubozoan Tripedalia cystophora, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol, vol.199, pp.785-797, 2013.

R. Ranganathan, S. C. Cannon, and H. R. Horvitz, MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans, Nature, vol.408, pp.470-475, 2000.

K. M. Crisp and K. A. Mesce, To swim or not to swim: Regional effects of serotonin, octopamine and amine mixtures in the medicinal leech, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol, vol.189, pp.461-470, 2003.

C. Veraszto, N. Ueda, L. A. Bezares-calderon, A. Panzera, E. A. Williams et al., Ciliomotor circuitry underlying whole-body coordination of ciliary activity in the Platynereis larva, vol.6, 2017.

M. P. Kinney, N. D. Panting, and T. M. Clark, Modulation of appetite and feeding behavior of the larval mosquito Aedes aegypti by the serotonin-selective reuptake inhibitor paroxetine: Shifts between distinct feeding modes and the influence of feeding status, J. Exp. Biol, vol.217, pp.935-943, 2014.

Z. R. Majeed, E. Abdeljaber, R. Soveland, K. Cornwell, A. Bankemper et al., Modulatory Action by the Serotonergic System: Behavior and Neurophysiology in Drosophila melanogaster, Neural Plast, 2016.

S. R. Mesquita, L. Guilhermino, and L. Guimaraes, Biochemical and locomotor responses of Carcinus maenas exposed to the serotonin reuptake inhibitor fluoxetine, Chemosphere, vol.85, pp.967-976, 2011.

D. W. Parsons and H. M. Pinsker, Swimming in Aplysia brasiliana: Behavioral and cellular effects of serotonin, J. Neurophysiol, vol.62, pp.1163-1176, 1989.

J. M. Newcomb and P. S. Katz, Different functions for homologous serotonergic interneurons and serotonin in species-specific rhythmic behaviours, Proc. Biol. Sci, vol.276, pp.99-108, 2009.

S. L. Lewis, D. E. Lyons, T. L. Meekins, and J. M. Newcomb, Serotonin influences locomotion in the nudibranch mollusc Melibe leonina, Biol. Bull, vol.220, pp.155-160, 2011.

V. Dyakonova, L. Hernadi, E. Ito, T. Dyakonova, I. Zakharov et al., The activity of isolated snail neurons controlling locomotion is affected by glucose, Biophysics, vol.11, pp.55-60, 2015.

P. P. Fong, T. B. Bury, E. E. Donovan, O. J. Lambert, J. R. Palmucci et al., Exposure to SSRI-type antidepressants increases righting time in the marine snail Ilyanassa obsoleta, Environ. Sci. Pollut. Res. Int, vol.24, pp.725-731, 2017.

C. Di-poi, F. Bidel, L. Dickel, and C. Bellanger, Cryptic and biochemical responses of young cuttlefish Sepia officinalis exposed to environmentally relevant concentrations of fluoxetine, Aquat. Toxicol, vol.151, pp.36-45, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01484236

P. P. Fong and A. T. Ford, The biological effects of antidepressants on the molluscs and crustaceans: A review, Aquat. Toxicol, vol.151, pp.4-13, 2014.

F. Camicia, M. Herz, L. C. Prada, L. Kamenetzky, S. H. Simonetta et al., The nervous and prenervous roles of serotonin in Echinococcus spp, Int. J. Parasitol, vol.43, pp.647-659, 2013.

A. Vidal-gadea, S. Topper, L. Young, A. Crisp, L. Kressin et al., Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin, Proc. Natl. Acad. Sci, vol.108, pp.17504-17509, 2011.

T. Wakabayashi, T. Osada, and R. Shingai, Serotonin deficiency shortens the duration of forward movement in Caenorhabditis elegans, Biosci. Biotechnol. Biochem, vol.69, pp.1767-1770, 2005.

E. R. Sawin, R. Ranganathan, and H. R. Horvitz, elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway, Neuron, vol.26, pp.619-631, 2000.

G. Gurel, M. A. Gustafson, J. S. Pepper, H. R. Horvitz, and M. R. Koelle, Receptors and other signaling proteins required for serotonin control of locomotion in Caenorhabditis elegans, Genetics, vol.192, pp.1359-1371, 2012.

A. Okazaki and S. Takagi, An optogenetic application of proton pump ArchT to C. elegans cells, Neurosci. Res, vol.75, pp.29-34, 2013.

S. Okusawa, H. Kohsaka, and A. Nose, Serotonin and downstream leucokinin neurons modulate larval turning behavior in Drosophila, J. Neurosci, vol.34, pp.2544-2558, 2014.

W. H. Wu and R. L. Cooper, Serotonin and synaptic transmission at invertebrate neuromuscular junctions, Exp. Neurobiol, vol.21, pp.101-112, 2012.

B. Silva, N. I. Goles, R. Varas, and J. M. Campusano, Serotonin receptors expressed in Drosophila mushroom bodies differentially modulate larval locomotion, PLoS ONE, vol.9, 2014.

R. M. Harris-warrick and A. H. Cohen, Serotonin modulates the central pattern generator for locomotion in the isolated lamprey spinal cord, J. Exp. Biol, vol.116, pp.27-46, 1985.

E. Brustein, M. Chong, B. Holmqvist, and P. Drapeau, Serotonin patterns locomotor network activity in the developing zebrafish by modulating quiescent periods, J. Neurobiol, vol.57, pp.303-322, 2003.

J. P. Gabriel, R. Mahmood, A. Kyriakatos, I. Soll, G. Hauptmann et al., Serotonergic modulation of locomotion in zebrafish: Endogenous release and synaptic mechanisms, J. Neurosci, vol.29, pp.10387-10395, 2009.

J. E. Montgomery, S. Wahlstrom-helgren, T. D. Wiggin, B. M. Corwin, C. Lillesaar et al., Intraspinal serotonergic signaling suppresses locomotor activity in larval zebrafish, Dev. Neurobiol, 2018.

K. T. Sillar, C. A. Reith, and J. R. Mcdearmid, Development and aminergic neuromodulation of a spinal locomotor network controlling swimming in Xenopus larvae, Ann. N. Y. Acad. Sci, vol.860, pp.318-332, 1998.

A. Rauscent, J. Einum, D. Le-ray, J. Simmers, and D. Combes, Opposing aminergic modulation of distinct spinal locomotor circuits and their functional coupling during amphibian metamorphosis, J. Neurosci, vol.29, pp.1163-1174, 2009.

D. Viala and P. Buser, Effects of a decarboxylase inhibitor on the Dopa and 5-HTP induced changes in the locomotor-like discharge pattern of rabbit hind limb nerves, Psychopharmacologia, vol.40, pp.225-233, 1974.

J. R. Cazalets, Y. Sqalli-houssaini, and F. Clarac, Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat, J. Physiol, vol.455, pp.187-204, 1992.

H. Nishimaru, H. Takizawa, and N. Kudo, 5-Hydroxytryptamine-induced locomotor rhythm in the neonatal mouse spinal cord in vitro, Neurosci. Lett, vol.280, pp.187-190, 2000.

M. Antri, J. Y. Barthe, C. Mouffle, and D. Orsal, Long-lasting recovery of locomotor function in chronic spinal rat following chronic combined pharmacological stimulation of serotonergic receptors with 8-OHDPAT and quipazine, Neurosci. Lett, vol.384, pp.162-167, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00110200

M. Gimenez-y-ribotta, D. Orsal, D. Feraboli-lohnherr, A. Privat, J. Provencher et al., Kinematic analysis of recovered locomotor movements of the hindlimbs in paraplegic rats transplanted with monoaminergic embryonic neurons, Ann. N. Y. Acad. Sci, vol.860, pp.521-523, 1998.

U. Slawinska, K. Miazga, and L. M. Jordan, The role of serotonin in the control of locomotor movements and strategies for restoring locomotion after spinal cord injury, Acta Neurobiol. Exp, vol.74, pp.172-187, 2014.

B. Ballion, D. Morin, and D. Viala, Forelimb locomotor generators and quadrupedal locomotion in the neonatal rat, Eur. J. Neurosci, vol.14, pp.1727-1738, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02484656

J. C. Norreel, J. F. Pflieger, E. Pearlstein, J. Simeoni-alias, F. Clarac et al., Reversible disorganization of the locomotor pattern after neonatal spinal cord transection in the rat, J. Neurosci, vol.23, pp.1924-1932, 2003.

J. Liu and L. M. Jordan, Stimulation of the parapyramidal region of the neonatal rat brain stem produces locomotor-like activity involving spinal 5-HT7 and 5-HT2A receptors, J. Neurophysiol, vol.94, pp.1392-1404, 2005.

L. Beliez, G. Barriere, S. S. Bertrand, and J. R. Cazalets, Origin of thoracic spinal network activity during locomotor-like activity in the neonatal rat, J. Neurosci, vol.35, pp.6117-6130, 2015.

Z. Oueghlani, L. Juvin, F. M. Lambert, L. Cardoit, G. Courtand et al., Serotonergic modulation of sacral dorsal root stimulation-induced locomotor output in newborn rat, Neuropharmacology, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02335978

J. F. Perrier and F. Cotel, Serotonergic modulation of spinal motor control, Curr. Opin. Neurobiol, vol.33, pp.1-7, 2015.

P. J. Harvey, X. Li, Y. Li, and D. J. Bennett, 5-HT2 receptor activation facilitates a persistent sodium current and repetitive firing in spinal motoneurons of rats with and without chronic spinal cord injury, J. Neurophysiol, vol.96, pp.1158-1170, 2006.

S. Dasari and R. L. Cooper, Modulation of sensory-CNS-motor circuits by serotonin, octopamine, and dopamine in semi-intact Drosophila larva, Neurosci. Res, vol.48, pp.221-227, 2004.

J. D. Angstadt, J. L. Grassmann, K. M. Theriault, and S. M. Levasseur, Mechanisms of postinhibitory rebound and its modulation by serotonin in excitatory swim motor neurons of the medicinal leech, J. Comp. Physiol. A Neuroetho.l Sens. Neural Behav. Physiol, vol.191, pp.715-732, 2005.

J. Bacque-cazenave, P. Fossat, F. A. Issa, D. H. Edwards, J. P. Delbecque et al., Duality of 5-HT Effects on Crayfish Motoneurons, Front. Physiol, vol.10, 1280.
URL : https://hal.archives-ouvertes.fr/hal-02333133

S. H. Lee, K. Taylor, and F. B. Krasne, Reciprocal stimulation of decay between serotonergic facilitation and depression of synaptic transmission, J. Neurophysiol, vol.100, pp.1113-1126, 2008.

R. W. Komuniecki, R. J. Hobson, E. B. Rex, V. M. Hapiak, and P. R. Komuniecki, Biogenic amine receptors in parasitic nematodes: What can be learned from Caenorhabditis elegans? Mol, Biochem. Parasitol, vol.137, pp.1-11, 2004.

L. Fischer and E. Florey, Modulation of synaptic transmission and excitation-contraction coupling in the opener muscle of the crayfish, Astacus leptodactylus, by 5-hydroxytryptamine and octopamine, J. Exp. Biol, vol.102, pp.187-198, 1983.

J. R. Strawn, W. S. Neckameyer, and R. L. Cooper, The effects of 5-HT on sensory, central and motor neurons driving the abdominal superficial flexor muscles in the crayfish, Comp. Biochem. Physiol. Part B Biochem. Mol. Biol, vol.127, pp.533-550, 2000.

L. E. Fox and P. E. Lloyd, Mechanisms involved in persistent facilitation of neuromuscular synapses in aplysia, J. Neurophysiol, vol.87, 2002.

D. P. Lotshaw and P. E. Lloyd, Peptidergic and serotonergic facilitation of a neuromuscular synapse in Aplysia, Brain Res, vol.526, pp.81-94, 1990.

B. L. Jacobs and C. A. Fornal, Activity of serotonergic neurons in behaving animals, Neuropsychopharmacology, vol.21, pp.9-15, 1999.

C. A. Severson, W. Wang, V. A. Pieribone, C. I. Dohle, and G. B. Richerson, Midbrain serotonergic neurons are central pH chemoreceptors, Nat. Neurosci, vol.6, pp.1139-1140, 2003.

J. Jing, R. Gillette, and K. R. Weiss, Evolving concepts of arousal: Insights from simple model systems, Rev. Neurosci, vol.20, pp.405-427, 2009.

A. Nall and A. Sehgal, Monoamines and sleep in Drosophila, Behav. Neurosci, vol.128, pp.264-272, 2014.

J. M. Monti, Serotonin control of sleep-wake behavior, Sleep Med. Rev, vol.15, pp.269-281, 2011.

C. Garau, S. Aparicio, R. V. Rial, M. C. Nicolau, and S. Esteban, Age related changes in the activity-rest circadian rhythms and c-fos expression of ring doves with aging. Effects of tryptophan intake, Exp. Gerontol, vol.41, pp.430-438, 2006.

S. D. Paredes, M. P. Terron, J. Cubero, V. Valero, C. Barriga et al., Comparative study of the activity/rest rhythms in young and old ringdove (Streptopelia risoria): Correlation with serum levels of melatonin and serotonin, Chronobiol. Int, vol.23, pp.779-793, 2006.

Q. Yuan, F. Lin, X. Zheng, and A. Sehgal, Serotonin modulates circadian entrainment in Drosophila, Neuron, vol.47, pp.115-127, 2005.

C. D. Nichols, Drosophila melanogaster neurobiology, neuropharmacology, and how the fly can inform central nervous system drug discovery, Pharmacol. Ther, vol.112, pp.677-700, 2006.

G. Artiushin and A. Sehgal, The Drosophila circuitry of sleep-wake regulation, Curr. Opin. Neurobiol, vol.44, pp.243-250, 2017.

Q. Yuan, W. J. Joiner, and A. Sehgal, A sleep-promoting role for the Drosophila serotonin receptor 1A, Curr. Biol. CB, vol.16, pp.1051-1062, 2006.

J. Strauss and H. Dircksen, Circadian clocks in crustaceans: Identified neuronal and cellular systems, Front. Biosci. Landmark Ed, vol.15, pp.1040-1074, 2010.

E. G. Escamilla-chimal and F. Van-herp, Fanjul-Moles, M.L. Daily variations in crustacean hyperglycaemic hormone and serotonin immunoreactivity during the development of crayfish, J. Exp. Biol, vol.204, pp.1073-1081, 2001.

G. Calderon-rosete, G. Flores, and L. Rodriguez-sosa, Diurnal rhythm in the levels of the serotonin 5-HT1A receptors in the crayfish eyestalk, Synapse, vol.59, pp.368-373, 2006.

J. P. Voigt and H. Fink, Serotonin controlling feeding and satiety, Behav. Brain Res, vol.277, pp.14-31, 2015.

G. A. Higgins, P. J. Fletcher, and W. R. Shanahan, Lorcaserin: A review of its preclinical and clinical pharmacology and therapeutic potential, Pharmacol. Ther, 2019.

S. P. Vickers and C. T. Dourish, Serotonin receptor ligands and the treatment of obesity, Curr. Opin. Investig. Drugs, vol.5, pp.377-388, 2004.

G. D'agostino, D. Lyons, C. Cristiano, M. Lettieri, C. Olarte-sanchez et al., HT2C Receptors Modulate Food Intake, vol.5, pp.619-630, 2018.

L. Valencia-torres, C. M. Olarte-sánchez, D. J. Lyons, T. Georgescu, M. Greenwald-yarnell et al., Activation of Ventral Tegmental Area 5-HT(2C) Receptors Reduces Incentive Motivation, Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol, vol.42, pp.1511-1521, 2017.

N. C. Anastasio, S. J. Stutz, R. G. Fox, R. M. Sears, R. B. Emeson et al., Functional status of the serotonin 5-HT2C receptor (5-HT2CR) drives interlocked phenotypes that precipitate relapse-like behaviors in cocaine dependence, Neuropsychopharmacology, vol.39, pp.370-382, 2014.

P. De-deurwaerdere, S. Navailles, K. A. Berg, W. P. Clarke, and U. Spampinato, Constitutive activity of the serotonin2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens, J. Neurosci, vol.24, pp.3235-3241, 2004.

P. De-deurwaerdere, M. Ramos, R. Bharatiya, E. Puginier, A. Chagraoui et al., Lorcaserin bidirectionally regulates dopaminergic function site-dependently and disrupts dopamine brain area correlations in rats, Neuropharmacology, vol.166, 2019.

G. A. Higgins and P. J. Fletcher, Therapeutic Potential of 5-HT2C Receptor Agonists for Addictive Disorders, ACS Chem. Neurosci, vol.6, pp.1071-1088, 2015.

G. A. Higgins, L. B. Silenieks, E. B. Altherr, C. Macmillan, P. J. Fletcher et al., Lorcaserin and CP-809101 reduce motor impulsivity and reinstatement of food seeking behavior in male rats: Implications for understanding the anti-obesity property of 5-HT2C receptor agonists, Psychopharmacology, vol.233, pp.2841-2856, 2016.

J. Bockaert, S. Claeysen, V. Compan, and A. Dumuis, 5-HT(4) receptors, a place in the sun: Act two, Curr. Opin. Pharmacol, vol.11, pp.87-93, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01667589

A. Jean, L. Laurent, J. Bockaert, Y. Charnay, N. Dusticier et al., The nucleus accumbens 5-HTR(4)-CART pathway ties anorexia to hyperactivity, Transl. Psychiatry, vol.2, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01667570

M. E. Haahr, P. M. Rasmussen, K. Madsen, L. Marner, C. Ratner et al., Obesity is associated with high serotonin 4 receptor availability in the brain reward circuitry, Neuroimage, vol.61, pp.884-888, 2012.

H. Rebholz, E. Friedman, and J. Castello, Alterations of Expression of the Serotonin 5-HT4 Receptor in Brain Disorders, Int. J. Mol. Sci, vol.19, 2018.

S. Luedtke, V. O'connor, L. Holden-dye, and R. J. Walker, The regulation of feeding and metabolism in response to food deprivation in Caenorhabditis elegans, Invertebr. Neurosci, vol.10, pp.63-76, 2010.

K. S. Lee, S. Iwanir, R. B. Kopito, M. Scholz, J. A. Calarco et al., Serotonin-dependent kinetics of feeding bursts underlie a graded response to food availability in C. elegans, Nat. Commun, vol.8, 2017.

I. Orchard, Peptides and serotonin control feeding-related events in Rhodnius prolixus, Front. Biosci. Elite Ed, vol.1, pp.250-262, 2009.

D. H. Edwards and N. Spitzer, Social dominance and serotonin receptor genes in crayfish, Curr. Top. Dev. Biol, vol.74, pp.177-199, 2006.

P. A. Stevenson and J. Rillich, The decision to fight or flee -insights into underlying mechanism in crickets, Front. Neurosci, vol.6, 2012.

K. A. Miczek, E. W. Fish, J. F. De-bold, and R. M. De-almeida, Social and neural determinants of aggressive behavior: Pharmacotherapeutic targets at serotonin, dopamine and gamma-aminobutyric acid systems, Psychopharmacology, vol.163, pp.434-458, 2002.

S. R. Yeh, R. A. Fricke, and D. H. Edwards, The effect of social experience on serotonergic modulation of the escape circuit of crayfish, Science, vol.271, pp.366-369, 1996.

S. R. Yeh, B. E. Musolf, and D. H. Edwards, Neuronal adaptations to changes in the social dominance status of crayfish, J. Neurosci, vol.17, pp.697-708, 1997.

D. Cattaert, J. P. Delbecque, D. H. Edwards, and F. A. Issa, Social interactions determine postural network sensitivity to 5-HT, J. Neurosci, vol.30, pp.5603-5616, 2010.

R. Huber, K. Smith, A. Delago, K. Isaksson, and E. A. Kravitz, Serotonin and aggressive motivation in crustaceans: Altering the decision to retreat, Proc. Natl. Acad. Sci, vol.94, pp.5939-5942, 1997.

J. Bacque-cazenave, D. Cattaert, J. P. Delbecque, and P. Fossat, Alteration of size perception: Serotonin has opposite effects on the aggressiveness of crayfish confronting either a smaller or a larger rival, J. Exp. Biol, vol.221, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02333018

C. Fachinelli, S. Sargo, R. Bataller, and E. L. Rodriguez-echandia, Effect of 5-HTP and ketanserine on the aggressive reaction induced by food competition in dominant and submissive pigeons

. Behav, Brain Res, vol.35, pp.265-270, 1989.

E. T. Larson and C. H. Summers, Serotonin reverses dominant social status, Behav. Brain Res, vol.121, pp.95-102, 2001.

S. Murakami and M. T. Itoh, Effects of aggression and wing removal on brain serotonin levels in male crickets, Gryllus bimaculatus, J. Insect Physiol, vol.47, pp.1309-1312, 2001.

H. A. Dierick and R. J. Greenspan, Serotonin and neuropeptide F have opposite modulatory effects on fly aggression, Nat. Genet, vol.39, pp.678-682, 2007.

O. V. Alekseyenko, C. Lee, and E. A. Kravitz, Targeted manipulation of serotonergic neurotransmission affects the escalation of aggression in adult male Drosophila melanogaster, PLoS ONE, vol.5, 2010.

O. V. Alekseyenko, Y. B. Chan, B. W. Okaty, Y. Chang, S. M. Dymecki et al., Serotonergic Modulation of Aggression in Drosophila Involves GABAergic and Cholinergic Opposing Pathways, Curr. Biol, vol.29, pp.2145-2156, 2019.

A. N. Bubak, M. J. Watt, J. D. Yaeger, K. J. Renner, and J. G. Swallow, The stalk-eyed fly as a model for aggression -is there a conserved role for 5-HT between vertebrates and invertebrates?, J. Exp. Biol, vol.2020

E. Edsinger and G. Dolen, A Conserved Role for Serotonergic Neurotransmission in Mediating Social Behavior in Octopus, Curr. Biol, vol.28, pp.3136-3142, 2018.

M. C. Soares, The Neurobiology of Mutualistic Behavior: The Cleanerfish Swims into the Spotlight, Front. Behav. Neurosci, vol.11, 0191.

M. S. Abreu, J. P. Messias, P. O. Thornqvist, S. Winberg, and M. C. Soares, Monoaminergic levels at the forebrain and diencephalon signal for the occurrence of mutualistic and conspecific engagement in client reef fish, Sci. Rep, vol.8, p.7346, 2018.

K. A. Miczek, S. C. Maxson, E. W. Fish, and S. Faccidomo, Aggressive behavioral phenotypes in mice, Behav. Brain Res, vol.125, pp.167-181, 2001.

B. Olivier and R. Van-oorschot, 5-HT1B receptors and aggression: A review, Eur. J. Pharmacol, vol.526, pp.207-217, 2005.

S. Howell, G. Westergaard, B. Hoos, T. J. Chavanne, S. E. Shoaf et al., Serotonergic influences on life-history outcomes in free-ranging male rhesus macaques, Am. J. Primatol, vol.69, pp.851-865, 2007.

F. G. Moeller, D. M. Dougherty, A. C. Swann, D. Collins, C. M. Davis et al., Tryptophan depletion and aggressive responding in healthy males, Psychopharmacology, vol.126, pp.97-103, 1996.

S. Uchida, A. Kitamoto, H. Umeeda, N. Nakagawa, S. Masushige et al., Chronic reduction in dietary tryptophan leads to changes in the emotional response to stress in mice, J. Nutr. Sci. Vitaminol, vol.51, pp.175-181, 2005.

S. F. De-boer and J. M. Koolhaas, 5-HT1A and 5-HT1B receptor agonists and aggression: A pharmacological challenge of the serotonin deficiency hypothesis, Eur. J. Pharmacol, vol.526, pp.125-139, 2005.

K. A. Miczek, E. Weerts, M. Haney, and J. Tidey, Neurobiological mechanisms controlling aggression: Preclinical developments for pharmacotherapeutic interventions, Neurosci. Biobehav. Rev, vol.18, pp.97-110, 1994.

F. Saudou, D. A. Amara, A. Dierich, M. Lemeur, S. Ramboz et al., Enhanced aggressive behavior in mice lacking 5-HT1B receptor, Science, vol.265, pp.1875-1878, 1994.

O. Johnson, J. Becnel, and C. D. Nichols, Serotonin 5-HT(2) and 5-HT(1A)-like receptors differentially modulate aggressive behaviors in Drosophila melanogaster, Neuroscience, vol.158, pp.1292-1300, 2009.

J. Rillich, B. Rillich, and P. A. Stevenson, Differential modulation of courtship behavior and subsequent aggression by octopamine, dopamine and serotonin in male crickets, Horm. Behav, vol.114, 2019.

M. J. Millan, The neurobiology and control of anxious states, Prog. Neurobiol, vol.70, pp.83-244, 2003.

J. Bacque-cazenave, D. Cattaert, J. P. Delbecque, and P. Fossat, Social harassment induces anxiety-like behaviour in crayfish, Sci. Rep, vol.7, p.39935, 2017.

F. Mohammad, S. Aryal, J. Ho, J. C. Stewart, N. A. Norman et al., Ancient Anxiety Pathways Influence Drosophila Defense Behaviors, Curr. Biol. CB, vol.26, pp.981-986, 2016.

N. M. Barnes and T. Sharp, A review of central 5-HT receptors and their function, Neuropharmacology, vol.38, pp.1083-1152, 1999.

D. Giovanni, G. De-deurwaerdere, and P. , New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders, Pharmacol. Ther, vol.157, pp.125-162, 2016.

M. J. Millan, Serotonin 5-HT2C receptors as a target for the treatment of depressive and anxious states: Focus on novel therapeutic strategies, Therapie, vol.60, pp.441-460, 2005.

A. S. Ries, T. Hermanns, B. Poeck, and R. Strauss, Serotonin modulates a depression-like state in Drosophila responsive to lithium treatment, Nat. Commun, 2017.

F. Artigas, Serotonin receptors involved in antidepressant effects, Pharmacol. Ther, vol.137, pp.119-131, 2013.

S. Kasper and M. Hamon, Beyond the monoaminergic hypothesis: Agomelatine, a new antidepressant with an innovative mechanism of action, World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry, vol.10, pp.117-126, 2009.

F. Lopez-munoz and C. Alamo, Monoaminergic neurotransmission: The history of the discovery of antidepressants from 1950s until today, Curr. Pharm. Des, vol.15, pp.1563-1586, 2009.

P. De-deurwaerdere and G. Di-giovanni, Serotonergic modulation of the activity of mesencephalic dopaminergic systems: Therapeutic implications, Prog. Neurobiol, vol.151, pp.175-236, 2017.

F. Artigas, D. J. Nutt, and R. Shelton, Mechanism of action of antidepressants, Psychopharmacol. Bull, vol.36, pp.123-132, 2002.

W. Blenau and M. Thamm, Distribution of serotonin (5-HT) and its receptors in the insect brain with focus on the mushroom bodies: Lessons from Drosophila melanogaster and Apis mellifera, Arthropod Struct. Dev, vol.40, pp.381-394, 2011.

C. Pittenger and E. R. Kandel, In search of general mechanisms for long-lasting plasticity: Aplysia and the hippocampus, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci, vol.358, pp.757-763, 2003.

M. C. Buhot, Serotonin receptors in cognitive behaviors, Curr. Opin. Neurobiol, vol.7, pp.243-254, 1997.

D. Svob-strac and N. Pivac, Muck-Seler, D. The serotonergic system and cognitive function, Transl. Neurosci, vol.7, pp.35-49, 2016.

D. Jong, I. E. Mork, and A. , Antagonism of the 5-HT6 receptor-Preclinical rationale for the treatment of Alzheimer's disease, Neuropharmacology, vol.125, pp.50-63, 2017.

R. Khoury, N. Grysman, J. Gold, K. Patel, and G. T. Grossberg, The role of 5 HT6-receptor antagonists in Alzheimer's disease: An update, Expert Opin. Investig. Drugs, vol.27, pp.523-533, 2018.

A. Meneses, Serotonin, neural markers, and memory, Front. Pharmacol, vol.6, p.143, 2015.

A. Meneses, Could the 5-HT1B receptor inverse agonism affect learning consolidation? Neurosci, Biobehav. Rev, vol.25, pp.193-201, 2001.

J. A. Harvey, S. E. Welsh, H. Hood, and A. G. Romano, Effect of 5-HT2 receptor antagonists on a cranial nerve reflex in the rabbit: Evidence for inverse agonism, Psychopharmacology, vol.141, pp.162-168, 1999.

P. De-deurwaerdère, G. Drutel, and G. Di-giovanni, Pharmacological analysis in favour of a physiological role for the constitutive activity of 5-HT2A receptors in learning

B. Guiard and G. Di, , pp.3-29, 2018.

J. A. Harvey, Role of the serotonin 5-HT(2A) receptor in learning, Learn. Mem. Cold Spring Harb. N. Y, vol.10, pp.355-362, 2003.

P. De-deurwaerdere, R. Bharatiya, A. Chagraoui, and G. Di-giovanni, Constitutive activity of 5-HT receptors: Factual analysis, Neuropharmacology, vol.17, 2020.

B. D. Dunn, T. Dalgleish, and A. D. Lawrence, The somatic marker hypothesis: A critical evaluation, Neurosci. Biobehav. Rev, vol.30, pp.239-271, 2006.

J. Daruna and P. Barnes, The impulsive client: Theory, research and treatment, A Neurodevelopmental View of Impulsivityand Its Relationship to the Superfactors of Personality

W. Mccown, J. Johnson, and M. Shure, , 1993.

J. W. Dalley, B. J. Everitt, T. W. Robbins, and . Impulsivity, compulsivity, and top-down cognitive control, vol.69, pp.680-694, 2011.

J. W. Dalley, A. C. Mar, D. Economidou, and T. W. Robbins, Neurobehavioral mechanisms of impulsivity: Fronto-striatal systems and functional neurochemistry, Pharmacol. Biochem. Behav, vol.90, pp.250-260, 2008.

F. Sieling, A. Bedecarrats, J. Simmers, A. A. Prinz, and R. Nargeot, Differential roles of nonsynaptic and synaptic plasticity in operant reward learning-induced compulsive behavior, Curr. Biol. CB, vol.24, pp.941-950, 2014.

T. G. Campbell and N. Persaud, The adaptiveness of self-control: Simulation of foraging mice, J. Comp. Psychol, vol.122, pp.368-372, 2008.

Y. Wang, Y. Pu, and P. Shen, Neuropeptide-gated perception of appetitive olfactory inputs in Drosophila larvae, Cell Rep, vol.3, pp.820-830, 2013.

F. Dellu-hagedorn, Relationship between impulsivity, hyperactivity and working memory: A differential analysis in the rat, Behav. Brain Funct. BBF, vol.2, issue.10, 2006.

M. Rivalan, V. Valton, P. Series, A. R. Marchand, and F. Dellu-hagedorn, Elucidating poor decision-making in a rat gambling task, PLoS ONE, vol.8, 2013.

D. Haas, E. N. Van-der-eijk, and J. A. , Where in the serotonergic system does it go wrong? Unravelling the route by which the serotonergic system affects feather pecking in chickens, Neurosci. Biobehav. Rev, vol.95, pp.170-188, 2018.

J. E. Grant and S. W. Kim, Brain circuitry of compulsivity and impulsivity, CNS Spectr, vol.19, pp.21-27, 2014.

H. F. Clarke, J. W. Dalley, H. S. Crofts, T. W. Robbins, and A. C. Roberts, Cognitive inflexibility after prefrontal serotonin depletion, Science, vol.304, pp.878-880, 2004.

H. F. Clarke, S. C. Walker, J. W. Dalley, T. W. Robbins, and A. C. Roberts, Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific, Cereb. Cortex, vol.17, pp.18-27, 2007.

S. Flaisher-grinberg, O. Klavir, and D. Joel, The role of 5-HT2A and 5-HT2C receptors in the signal attenuation rat model of obsessive-compulsive disorder, Int. J. Neuropsychopharmacol, vol.11, pp.811-825, 2008.

J. Alsio, S. R. Nilsson, F. Gastambide, R. A. Wang, S. A. Dam et al., The role of 5-HT2C receptors in touchscreen visual reversal learning in the rat: A cross-site study, Psychopharmacology, vol.232, pp.4017-4031, 2015.

D. S. Kreiss and P. .;-de-deurwaerdere, Purposeless oral activity induced by meta-chlorophenylpiperazine (m-CPP): Undefined tic-like behaviors?, J. Neurosci. Methods, vol.292, pp.30-36, 2017.

S. V. Navarro, V. Gutierrez-ferre, P. Flores, and M. Moreno, Activation of serotonin 5-HT2A receptors inhibits high compulsive drinking on schedule-induced polydipsia, Psychopharmacology, vol.232, pp.683-697, 2015.

N. C. Anastasio, S. J. Stutz, L. H. Fink, S. E. Swinford-jackson, R. M. Sears et al., -HT) 5-HT2A Receptor (5-HT2AR):5-HT2CR Imbalance in Medial Prefrontal Cortex Associates with Motor Impulsivity, vol.6, pp.1248-1258, 2015.

C. A. Winstanley, D. E. Theobald, J. W. Dalley, and T. W. Robbins, Interactions between serotonin and dopamine in the control of impulsive choice in rats: Therapeutic implications for impulse control disorders, Neuropsychopharmacology, vol.30, pp.669-682, 2005.

F. Dellu-hagedorn, M. Rivalan, A. Fitoussi, and P. De-deurwaerdere, Inter-individual differences in the impulsive/compulsive dimension: Deciphering related dopaminergic and serotonergic metabolisms at rest, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci, vol.373, 2018.

D. Gregorio, D. Mclaughlin, R. J. Posa, L. Ochoa-sanchez, R. Enns et al., Cannabidiol modulates serotonergic transmission and reverses both allodynia and anxiety-like behavior in a model of neuropathic pain, Pain, vol.160, pp.136-150, 2019.

M. J. Millan, The induction of pain: An integrative review, Prog. Neurobiol, vol.57, pp.1-164, 1999.

J. B. Pineda-farias, P. Barragan-iglesias, A. Valdivieso-sanchez, J. Rodriguez-silverio, F. J. Flores-murrieta et al., Spinal 5-HT4 and 5-HT6 receptors contribute to the maintenance of neuropathic pain in rats, Pharmacol. Rep, vol.69, pp.916-923, 2017.

F. E. Perrin and H. Noristani, Serotonergic mechanisms in spinal cord injury, Exp. Neurol, vol.318, pp.174-191, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02156101

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI