Replication fork collapse at replication terminator sequences - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue EMBO Journal Année : 2002

Replication fork collapse at replication terminator sequences

Résumé

Replication fork arrest is a source of genome re arrangements, and the recombinogenic properties of blocked forks are likely to depend on the cause of blockage. Here we study the fate of replication forks blocked at natural replication arrest sites. For this purpose, Escherichia coli replication terminator sequences Ter were placed at ectopic positions on the bacterial chromosome. The resulting strain requires recombinational repair for viability, but replication forks blocked at Ter are not broken. Linear DNA molecules are formed upon arrival of a second round of replication forks that copy the DNA strands of the first blocked forks to the end. A model that accounts for the requirement for homologous recombination for viability in spite of the lack of chromosome breakage is proposed. This work shows that natural and accidental replication arrests sites are processed differently.

Mots clés

DNA

Dates et versions

hal-02683441 , version 1 (01-06-2020)

Identifiants

Citer

Vladimir Bidnenko, S. Dusko Ehrlich, Bénédicte Michel. Replication fork collapse at replication terminator sequences. EMBO Journal, 2002, 21 (14), pp.3898-3907. ⟨10.1093/emboj/cdf369⟩. ⟨hal-02683441⟩
18 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More