S. Abraham, M. Raisee, G. Ghorbaniasl, F. Contino, and F. Lacor, A robust and efficient stepwise regression method for building sparse polynomial chaos expansions, J. Comput. Phys, vol.332, pp.461-474, 2017.

N. Alemazkoor and H. Meidani, Divide and conquer: An incremental sparsity promoting compressive sampling approach for polynomial chaos expansions, Comput. Methods Appl. Mech. Engrg, vol.318, pp.937-956, 2017.

N. Alemazkoor and H. Meidani, A near-optimal sampling strategy for sparse recovery of polynomial chaos expansions, J. Comput. Phys, vol.371, pp.137-151, 2018.

N. Alemazkoor and H. Meidani, A preconditioning approach for improved estimation of sparse polynomial chaos expansions, Comput. Methods Appl. Mech. Engrg, vol.342, pp.474-489, 2018.

Y. Arjoune, N. Kaabouch, H. E. Ghazi, and A. Tamtaoui, Compressive sensing: Performance comparison of sparse recovery algorithms, IEEE CCWC, pp.1-7, 2017.

D. Babacan, Bayesian Compressive Sensing using Laplace Priors, 2011.

S. Babacan, R. Molina, and A. Katsaggelos, Bayesian compressive sensing using Laplace priors, IEEE Trans. Image Process, vol.19, issue.1, pp.53-63, 2010.

R. Baptista, V. Stolbunov, and P. B. Nair, Some greedy algorithms for sparse polynomial chaos expansions, J. Comput. Phys, vol.387, pp.303-325, 2019.

D. Baumann and K. Baumann, Reliable estimation of prediction errors for QSAR models under model uncertainty using double cross-validation, J. Cheminf, vol.6, issue.1, p.47, 2014.

M. Berchier, Orthogonal matching pursuit for sparse polynomial chaos expansions. ETH Zürich, 2015.

M. Berveiller, Stochastic finite elements : intrusive and non intrusive methods for reliability analysis, 2005.

M. Berveiller, B. Sudret, and M. Lemaire, Stochastic finite elements: a non intrusive approach by regression, Eur. J. Comput. Mech, vol.15, issue.1-3, pp.81-92, 2006.

E. G. Birgin, J. M. Martínez, and M. Raydan, Nonmonotone spectral projected gradient methods on convex sets, SIAM J. Optim, vol.10, issue.4, pp.1196-1211, 2000.

G. Blatman and B. Sudret, Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach, Comptes Rendus Mécanique, vol.336, issue.6, pp.518-523, 2008.

G. Blatman and B. Sudret, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Prob. Eng. Mech, vol.25, pp.183-197, 2010.

G. Blatman and B. Sudret, Adaptive sparse polynomial chaos expansion based on Least Angle Regression, J. Comput. Phys, vol.230, pp.2345-2367, 2011.

A. M. Bruckstein, D. L. Donoho, and M. Elad, From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM review, vol.51, issue.1, pp.34-81, 2009.

E. Candès and J. Romberg, , vol.22, p.1, 2005.

E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, vol.52, issue.2, pp.489-509, 2006.

E. J. Candès and Y. Plan, A probabilistic and RIPless theory of compressed sensing, IEEE Trans. Inform. Theory, vol.57, issue.11, pp.7235-7254, 2011.

E. J. Candès and M. B. Wakin, An introduction to compressive sampling: A sensing/sampling paradigm that goes against the common knowledge in data acquisition, IEEE Signal Process. Mag, vol.25, issue.2, pp.21-30, 2008.

E. J. Candès, M. B. Wakin, and S. P. Boyd, Enhancing sparsity by reweighted 1 minimization, J. Fourier Anal. Appl, vol.14, issue.5-6, pp.877-905, 2008.

I. Carron, Compressive Sensing: The Big Picture, 2013.

O. Chapelle, V. Vapnik, and Y. Bengio, Model selection for small sample regression, Machine Learning, vol.48, issue.1, pp.9-23, 2002.

K. Cheng and Z. Lu, Adaptive sparse polynomial chaos expansions for global sensitivity analysis based on support vector regression, Comput. Struct, vol.194, pp.86-96, 2018.

K. Cheng and Z. Lu, Sparse polynomial chaos expansion based on D-MORPH regression, Appl. Math. Comput, vol.323, pp.17-30, 2018.

R. D. Cook and C. J. Nachtsheim, A comparison of algorithms for constructing exact D-optimal designs, Technometrics, vol.22, issue.3, pp.315-324, 1980.

W. Dai and O. Milenkovic, Subspace pursuit for compressive sensing signal reconstruction, IEEE Trans. Inform. Theory, vol.55, issue.5, pp.2230-2249, 2009.

P. Diaz, , vol.22, 2018.

P. Diaz, A. Doostan, and J. Hampton, Sparse polynomial chaos expansions via compressed sensing and D-optimal design, Comput. Methods Appl. Mech. Engrg, vol.336, pp.640-666, 2018.

D. Donoho, I. Drori, V. Stodden, Y. Tsaig, and M. Shahram, SparseLab -Seeking Sparse Solutions to Linear Systems of Equations, vol.22, 2007.

D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, vol.52, issue.4, pp.1289-1306, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00369486

A. Doostan and H. Owhadi, A non-adapted sparse approximation of PDEs with stochastic inputs, J. Comput. Phys, vol.230, issue.8, pp.3015-3034, 2011.

S. Dutta and A. H. Gandomi, Design of experiments for uncertainty quantification based on polynomial chaos expansion metamodels, Handbook of Probabilistic Models, pp.369-381, 2020.

O. Dykstra, The augmentation of experimental data to maximize, 1971.

, Technometrics, vol.13, issue.3, pp.682-688

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, Least angle regression, Ann. Stat, vol.32, pp.407-499, 2004.

O. Ernst, A. Mugler, H. Starkloff, and E. Ullmann, On the convergence of generalized polynomial chaos expansions, ESAIM: Math. Model. Numer. Anal, vol.46, issue.02, pp.317-339, 2012.

N. Fajraoui, S. Marelli, and B. Sudret, Sequential design of experiment for sparse polynomial chaos expansions, SIAM/ASA J. Unc. Quant, vol.5, issue.1, pp.1061-1085, 2017.

A. C. Faul and M. E. Tipping, Analysis of sparse Bayesian learning, Advances in neural information processing systems, pp.383-389, 2002.

V. V. Fedorov, Theory of optimal experiments, 2013.

M. A. Figueiredo, Adaptive sparseness for supervised learning, IEEE Trans. Pattern Anal. Mach. Intell, vol.25, issue.9, pp.1150-1159, 2003.

M. A. Figueiredo and R. D. Nowak, Wavelet-based image estimation: an empirical Bayes approach using Jeffrey's noninformative prior, IEEE Trans. Image Process, vol.10, issue.9, pp.1322-1331, 2001.

R. G. Ghanem and P. Spanos, Stochastic finite elements -A spectral approach, 1991.

M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR factorization, SIAM J. Sci. Comput, vol.17, issue.4, pp.848-869, 1996.

L. Guo, A. Narayan, T. Zhou, and Y. Chen, Stochastic collocation methods via 1 minimization using randomized quadratures, SIAM J. Sci. Comput, vol.39, issue.1, pp.333-359, 2017.

M. Hadigol and A. Doostan, Least squares polynomial chaos expansion: A review of sampling strategies, Comput. Methods Appl. Mech. Engrg, vol.332, pp.382-407, 2018.

J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numer. Math, vol.2, issue.1, pp.84-90, 1960.

J. Hampton and A. Doostan, Coherence motivated sampling and convergence analysis of least squares polynomial chaos regression, Comput. Methods Appl. Mech. Engrg, vol.290, pp.73-97, 2015.

J. Hampton and A. Doostan, Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies, J. Comput. Phys, vol.280, pp.363-386, 2015.

J. Hampton and A. Doostan, , 2017.

J. Hampton and A. Doostan, Basis adaptive sample efficient polynomial chaos (BASE-PC), J. Comput. Phys, vol.371, pp.20-49, 2018.

W. V. Harper and S. K. Gupta, Sensitivity/uncertainty analysis of a borehole scenario comparing Latin hypercube sampling and deterministic sensitivity approaches, 1983.

T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: Data mining, inference and prediction, 2001.

Y. P. Hong and C. Pan, Rank-revealing QR factorizations and the singular value decomposition, Math. Comput, vol.58, pp.213-232, 0197.

S. Hosder, R. Walters, and M. Balch, Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables, p.48, 2007.

A. Structures, Structural Dynamics, and Materials Conference, p.1939

C. Hu and B. D. Youn, Adaptive-sparse polynomial chaos expansion for reliability analysis and design of complex engineering systems, Struct. Multidisc. Optim, vol.43, pp.419-442, 2011.

R. Hu and M. Ludkovski, Sequential design for ranking response surfaces, SIAM/ASA J. Unc. Quant, vol.5, issue.1, pp.212-239, 2017.

X. Huan, C. Safta, K. Sargsyan, Z. P. Vane, G. Lacaze et al., Compressive sensing with cross-validation and stop-sampling for sparse polynomial chaos expansions, SIAM/ASA J. Unc. Quant, vol.6, issue.2, pp.907-936, 2018.

S. S. Isukapalli, Uncertainty Analysis of Transport-Transformation Models, 1999.

J. D. Jakeman, M. S. Eldred, and K. Sargsyan, Enhancing 1 -minimization estimates of polynomial chaos expansions using basis selection, J. Comput. Phys, vol.289, pp.18-34, 2015.

J. D. Jakeman, A. Narayan, and T. Zhou, A generalized sampling and preconditioning scheme for sparse approximation of polynomial chaos expansions, SIAM J. Sci. Comput, vol.39, issue.3, pp.1114-1144, 2017.

S. Ji, Y. Xue, and L. Carin, Bayesian compressive sensing, IEEE Trans. Signal Process, vol.56, issue.6, pp.2346-2356, 2008.

J. Kiefer and J. Wolfowitz, Optimum designs in regression problems, Ann. Math. Stat, vol.30, issue.2, pp.271-294, 1959.

K. Konakli and B. Sudret, Global sensitivity analysis using low-rank tensor approximations, Reliab. Eng. Sys. Safety, vol.156, pp.64-83, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01428988

C. Lataniotis, S. Marelli, and B. Sudret, Extending classical surrogate modelling to high dimensions through supervised dimensionality reduction: A data-driven approach, Int. J. Uncertain. Quantif.. accepted, 2019.

C. C. Li and A. Der-kiureghian, Optimal discretization of random fields, J. Eng. Mech, vol.119, issue.6, pp.1136-1154, 1993.

G. Li and H. Rabitz, D-MORPH regression: application to modeling with unknown parameters more than observation data, J. Math. Chem, vol.48, issue.4, pp.1010-1035, 2010.

Z. Liu, D. Lesselier, B. Sudret, and J. Wiart, Surrogate modeling based on resampled polynomial chaos expansions, Reliab. Eng. Sys. Safety. accepted, 2020.
URL : https://hal.archives-ouvertes.fr/hal-01889651

Z. Liu, D. Lesselier, B. Sudret, and J. Wiart, Surrogate modeling of indoor down-link human exposure based on sparse polynomial chaos expansion, Int. J. Uncertainty Quantification, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02122454

S. Marelli and B. Sudret, UQLab: A framework for uncertainty quantification in Matlab, Vulnerability, Uncertainty, and Risk (Proc. 2nd Int. Conf. on Vulnerability, Risk Analysis and Management (ICVRAM2014), pp.2554-2563, 2014.

S. Marelli and B. Sudret, Chair of Risk, Safety & Uncertainty Quantification, 2019.

L. Mathelin and K. Gallivan, A compressed sensing approach for partial differential equations with random input data, Commun. Comput. Phys, vol.12, issue.4, pp.919-954, 2012.

M. D. Mckay, R. J. Beckman, and W. J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, vol.2, pp.239-245, 1979.

A. Mikhalev and I. V. Oseledets, Rectangular maximum-volume submatrices and their applications, Linear Algebra Appl, vol.538, pp.187-211, 2018.

D. C. Montgomery, Design and analysis of experiments, 2004.

A. Narayan, J. Jakeman, and T. Zhou, A Christoffel function weighted least squares algorithm for collocation approximations, Math. Comput, vol.86, issue.306, pp.1913-1947, 2017.

D. Needell and J. A. Tropp, CoSaMP: Iterative signal recovery from incomplete and inaccurate samples, Appl. Comput. Harmon. A, vol.26, issue.3, pp.301-321, 2009.

N. Nguyen and A. J. Miller, A review of some exchange algorithms for constructing discrete D-optimal designs, Comput. Stat. Data An, vol.14, issue.4, pp.489-498, 1992.

A. B. Owen, Controlling correlations in Latin hypercube samples, J. Am. Stat. Assoc, vol.89, issue.428, pp.1517-1522, 1994.

I. Papaioannou, M. Ehre, and D. Straub, PLS-based adaptation for efficient PCE representation in high dimensions, J. Comput. Phys, vol.387, pp.186-204, 2019.

Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition, Proc. of 27th, 1993.

, Asilomar Conf. on signals, systems and computers, pp.40-44

J. Peng, J. Hampton, and A. Doostan, A weighted 1 -minimization approach for sparse polynomial chaos expansions, J. Comput. Phys, vol.267, pp.92-111, 2014.

Z. Perkó, L. Gilli, D. Lathouwers, and J. L. Kloosterman, Grid and basis adaptive polynomial chaos techniques for sensitivity and uncertainty analysis, J. Comput. Phys, vol.260, pp.54-84, 2014.

L. Pronzato and W. G. Müller, Design of computer experiments: space filling and beyond, Stat. Comput, vol.22, issue.3, pp.681-701, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00685876

S. Qaisar, R. M. Bilal, W. Iqbal, M. Naureen, and S. Lee, Compressive sensing: From theory to applications, a survey, J. Commun. Netw, vol.15, issue.5, pp.443-456, 2013.

H. Rauhut and R. Ward, Sparse Legendre expansions via 1 -minimization, J. Approx. Theory, vol.164, issue.5, pp.517-533, 2012.

K. Sargsyan, C. Safta, H. Najm, B. Debusschere, D. Ricciuto et al., Dimensionality reduction for complex models via Bayesian compressive sensing, Int. J. Uncertain. Quantificat, vol.4, issue.1, pp.63-93, 2014.

M. W. Seeger and H. Nickisch, Compressed sensing and Bayesian experimental design, Proc. of the 25th Int. Conf. on Machine Learning, pp.912-919, 2008.

P. Seshadri, A. Narayan, and S. Mahadevan, Effectively subsampled quadratures for least squares polynomial approximations, SIAM/ASA J. Unc. Quant, vol.5, issue.1, pp.1003-1023, 2017.

B. Settles, Active learning, Synthesis Lectures on Artificial Intelligence and Machine Learning, vol.6, issue.1, pp.1-114, 2012.

Q. Shao, A. Younes, M. Fahs, and T. Mara, Bayesian sparse polynomial chaos expansion for global sensitivity analysis, Comput. Meth. Appl. Mech. Eng, vol.318, pp.474-496, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01476649

D. Shen, H. Wu, B. Xia, and D. Gan, Polynomial chaos expansion for parametric problems in engineering systems: A review, IEEE Syst. J, 2020.

M. D. Shields and J. Zhang, The generalization of Latin hypercube sampling, Reliab. Eng. Syst. Saf, vol.148, pp.96-108, 2016.

Y. Shin and D. Xiu, Nonadaptive quasi-optimal points selection for least squares linear regression, SIAM J. Sci. Comput, vol.38, issue.1, pp.385-411, 2016.

Y. Shin and D. Xiu, On a near optimal sampling strategy for least squares polynomial regression, J. Comput. Phys, vol.326, pp.931-946, 2016.

&. Sobol and I. M. , Distribution of points in a cube and approximate evaluation of integrals, U.S.S.R Comput. Maths. Math. Phys, vol.7, pp.86-112, 1967.

B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliab. Eng. Sys. Safety, vol.93, pp.964-979, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01432217

G. Tang and G. Iaccarino, Subsampled Gauss quadrature nodes for estimating polynomial chaos expansions, SIAM/ASA J. Unc. Quant, vol.2, issue.1, pp.423-443, 2014.

A. Tarakanov and A. H. Elsheikh, Regression-based sparse polynomial chaos for uncertainty quantification of subsurface flow models, J. Comput. Phys, vol.399, p.108909, 2019.

R. Tipireddy and R. Ghanem, Basis adaptation in homogeneous chaos spaces, J. Comput. Phys, vol.259, pp.304-317, 2014.

M. E. Tipping, Sparse Bayesian learning and the relevance vector machine, J. Mach. Learn. Res, vol.1, pp.211-244, 2001.

M. E. Tipping and A. C. Faul, Fast marginal likelihood maximisation for sparse Bayesian models, Proc. 9th Int. Workshop on Artificial Intelligence and Statistics, 2003.

J. A. Tropp and A. C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit, IEEE Trans. Inform. Theory, vol.53, issue.12, pp.4655-4666, 2007.

P. Tsilifis, X. Huan, C. Safta, K. Sargsyan, G. Lacaze et al.,

. Ghanem, Compressive sensing adaptation for polynomial chaos expansions, J. Comput. Phys, vol.380, pp.29-47, 2019.

E. Van-den-berg and M. P. Friedlander, Probing the Pareto frontier for basis pursuit solutions, SIAM J. Sci. Comput, vol.31, issue.2, pp.890-912, 2008.

E. Van-den-berg and M. P. Friedlander, SPGL1 -A Matlab solver for sparse optimization, vol.22, 2015.

D. P. Wipf, J. Palmer, and B. D. Rao, Perspectives on sparse Bayesian learning, Advances in neural information processing systems, pp.249-256, 2004.

D. P. Wipf and B. D. Rao, Sparse Bayesian learning for basis selection, IEEE Trans. Signal Process, vol.52, issue.8, pp.2153-2164, 2004.

D. Xiu and J. S. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput, vol.27, issue.3, pp.1118-1139, 2005.

D. Xiu and G. E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput, vol.24, issue.2, pp.619-644, 2002.

L. Yan, L. Guo, and D. Xiu, Stochastic collocation algorithms using 1 -minimization, Int. J. Uncertain. Quantif, vol.2, issue.3, 2012.

X. Yang and G. E. Karniadakis, Reweighted 1 minimization method for stochastic elliptic differential equations, J. Comput. Phys, vol.248, pp.87-108, 2013.

X. Yang, W. Li, and A. Tartakovsky, Sliced-inverse-regression-aided rotated compressive sensing method for uncertainty quantification, SIAM/ASA J. Unc. Quant, vol.6, issue.4, pp.1532-1554, 2018.

P. Yin, Y. Lou, Q. He, and J. Xin, Minimization of 1?2 for compressed sensing, SIAM J. Sci. Comput, vol.37, issue.1, pp.536-563, 2015.

V. P. Zankin, G. V. Ryzhakov, and I. V. Oseledets, Gradient descent-based D-optimal design for the least-squares polynomial approximation, 2018.

S. Zein, B. Colson, and F. Glineur, An efficient sampling method for regression-based polynomial chaos expansion, Commun. Comput. Phys, vol.13, issue.4, pp.1173-1188, 2013.

Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, A survey of sparse representation: algorithms and applications, IEEE access, vol.3, pp.490-530, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01311245

H. Zhao, Z. Gao, F. Xu, Y. Zhang, and J. Huang, An efficient adaptive forwardbackward selection method for sparse polynomial chaos expansion, Comput. Methods Appl. Mech. Engrg, vol.355, pp.456-491, 2019.

W. Zhao and L. Bu, Global sensitivity analysis with a hierarchical sparse metamodeling method, Mech. Syst. Signal Pr, vol.115, pp.769-781, 2019.

T. Zhou, A. Narayan, and Z. Xu, Multivariate discrete least-squares approximations with a new type of collocation grid, SIAM J. Sci. Comput, vol.36, issue.5, pp.2401-2422, 2014.

Y. Zhou, Z. Lu, and K. Cheng, Sparse polynomial chaos expansions for global sensitivity analysis with partial least squares and distance correlation, Struct. Multidiscip. O, vol.59, issue.1, pp.229-247, 2019.

Y. Zhou, Z. Lu, K. Cheng, and C. Ling, An efficient and robust adaptive sampling method for polynomial chaos expansion in sparse Bayesian learning framework, Comput. Methods Appl. Mech. Engrg, vol.352, pp.654-674, 2019.

Y. Zhou, Z. Lu, K. Cheng, and Y. Shi, An expanded sparse Bayesian learning method for polynomial chaos expansion, Mech. Syst. Signal Pr, vol.128, pp.153-171, 2019.