Global sensitivity analysis using low-rank tensor approximations

Abstract : In the context of global sensitivity analysis, the Sobol’ indices constitute a powerful tool for assessing the relative significance of the uncertain input parameters of a model. We herein introduce a novel approach for evaluating these indices at low computational cost, by post-processing the coefficients of polynomial meta-models belonging to the class of low-rank tensor approximations. Meta-models of this class can be particularly efficient in representing responses of high-dimensional models, because the number of unknowns in their general functional form grows only linearly with the input dimension. The proposed approach is validated in example applications, where the Sobol’ indices derived from the meta-model coefficients are compared to reference indices, the latter obtained by exact analytical solutions or Monte-Carlo simulation with extremely large samples. Moreover, low-rank tensor approximations are confronted to the popular polynomial chaos expansion meta-models in case studies that involve analytical rank-one functions and finite-element models pertinent to structural mechanics and heat conduction. In the examined applications, indices based on the novel approach tend to converge faster to the reference solution with increasing size of the experimental design used to build the meta-model.
Type de document :
Article dans une revue
Reliability Engineering and System Safety, Elsevier, 2016, 〈10.1016/j.ress.2016.07.012〉
Liste complète des métadonnées

Littérature citée [74 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01428988
Contributeur : Noura Fajraoui <>
Soumis le : mercredi 11 janvier 2017 - 17:51:50
Dernière modification le : jeudi 11 janvier 2018 - 06:22:26
Document(s) archivé(s) le : mercredi 12 avril 2017 - 12:18:46

Fichier

RSUQ-2016-004.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

K. Konakli, B. Sudret. Global sensitivity analysis using low-rank tensor approximations. Reliability Engineering and System Safety, Elsevier, 2016, 〈10.1016/j.ress.2016.07.012〉. 〈hal-01428988〉

Partager

Métriques

Consultations de la notice

49

Téléchargements de fichiers

85