A. Kumar and J. Pillai, Chapter 13: implantable drug delivery systems-an overview, Grumezescu AM (ed) Nanostructures for the engineering of cells, tissues and organs, pp.473-511, 2018.

A. J. Gavasane and H. A. Pawar, Synthetic biodegradable polymers used in controlled drug delivery system: an overview, Clin Pharmacol Biopharm, vol.3, issue.2, pp.1-7, 2014.

B. Ben-nissan, Discovery and development of marine biomaterials, Functional marine biomaterials, vol.100, pp.3-28, 2015.

I. J. Macha, S. Cazalbou, R. Shimmon, B. Ben-nissan, and B. Milthorpe, Development and dissolution studies of bisphosphonate (clodronate)-containing hydroxyapatite-polylactic acid biocomposites for slow drug delivery, Journal of Tissue Engineering and Regenerative Medicine, vol.11, issue.6, pp.1723-1731, 2017.

I. J. Macha, C. Charvillat, S. Cazalbou, D. Grossin, U. Boonyang et al., Comparative study of coral conversion, Part 3: intermediate products in the first half an hour, J Aust Ceram Soc, vol.52, issue.1, pp.177-182, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01468002

I. J. Macha, L. S. Ozyegin, J. Chou, R. Samur, F. N. Oktar et al., An Alternative Synthesis Method for Di Calcium Phosphate (Monetite) Powders from Mediterranean Mussel (Mytilus galloprovincialis) Shells, J Aust Ceram Soc, vol.49, issue.2, pp.122-128, 2013.

S. Dhar, F. X. Gu, R. Langer, O. C. Farokhzad, and S. J. Lippard, Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles, Proc Natl Acad Sci, vol.105, issue.45, pp.17356-17361, 2008.

L. G. Griffith, Polymeric biomaterials, Acta Mater, vol.48, issue.1, pp.299-301, 2000.

X. Lou, C. Detrembleur, and R. Jérôme, Novel Aliphatic Polyesters Based on Functional Cyclic (Di)Esters, Macromol Rapid Commun, vol.24, issue.2, pp.161-172, 2003.

D. Da-silva, M. Kaduri, M. Poley, O. Adir, N. Krinsky et al., Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems, Chem Eng J, vol.340, pp.9-14, 2018.

B. Thavornyutikarn, N. Chantarapanich, K. Sitthiseripratip, G. A. Thouas, and Q. Chen, Bone tissue engineering scaffolding: computer-aided scaffolding techniques, Progress in Biomaterials, vol.3, issue.2, pp.61-102, 2014.

S. C. Tjong, Structural and mechanical properties of polymer nanocomposites, Materials Science and Engineering: R: Reports, vol.53, issue.3, pp.73-197, 2006.

P. Thomas, Clinical and diagnostic challenges of metal implant allergy using the example of orthopaedic surgical implants: part 15 of the Series Molecular Allergology, Allergo Journal International, vol.23, issue.6, pp.179-185, 2014.

V. Q. Le, G. Pourroy, A. Cochis, L. Rimondini, W. I. Abdel-fattah et al., Alternative technique for calcium phosphate coating on titanium alloy implants, Biomatter, vol.4, p.28534, 2014.

B. Ben-nissan, I. Macha, S. Cazalbou, and A. H. Choi, Calcium phosphate nanocoatings and nanocomposites, part 2: thin films for slow drug delivery and osteomyelitis, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02430692

M. Kinoshita, Targeted drug delivery to the brain using focused ultrasound, Topics in magnetic resonance imaging: TMRI, vol.17, issue.3, pp.209-215, 2006.

O. Kuittinen, T. Siniluoto, M. Isokangas, T. Turpeenniemi-hujanen, J. Peltonen et al., Chemotherapy in conjunction with blood brain barrier disruption in the treatment of primary central nervous system lymphoma, Duodecim; laaketieteellinen aikakauskirja, vol.129, issue.15, pp.1563-1570, 2013.

T. Patel, J. Zhou, J. M. Piepmeier, and W. M. Saltzman, Polymeric Nanoparticles for Drug Delivery to the Central Nervous System, 2012.

, Adv Drug Deliv Rev, vol.64, issue.7, pp.701-705

, Neurological disorders: public health challenges, WHO, 2007.

H. Yang, Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis, Pharm Res, vol.27, issue.9, pp.1759-1771, 2010.

C. Roney, P. Kulkarni, V. Arora, P. Antich, F. Bonte et al., Targeted nanoparticles for drug delivery through the blood-brain barrier for Alzheimer's disease, J Controll Release, vol.108, issue.2, pp.193-214, 2005.

B. Wilson, M. K. Samanta, K. Santhi, K. Kumar, M. Ramasamy et al., Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine, Nanomed Nanotechnol Biol Med, vol.6, issue.1, pp.144-152, 2010.

C. Saraiva, C. Praça, R. Ferreira, T. Santos, L. Ferreira et al., Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases, 2016.

, J Controll Release, vol.235, pp.34-47

B. Ben-nissan, Natural bioceramics: from coral to bone and beyond, Curr Opin Solid State Mater Sci, vol.7, issue.4, pp.283-288, 2003.

B. Ben-nissan and D. W. Green, Marine structures as templates for biomaterials, Advances in calcium phosphate biomaterials, pp.391-414, 2014.

M. Aviv, I. Berdicevsky, and M. Zilberman, Gentamicin-loaded bioresorbable films for prevention of bacterial infections associated with orthopedic implants, J Biomed Mater Res Part A, vol.83, issue.1, pp.10-19, 2007.

J. Chou, S. Valenzuela, D. W. Green, L. Kohan, B. Milthorpe et al., Antibiotic delivery potential of nanoand micro-porous marine structure-derived beta-tricalcium phosphate spheres for medical applications, Nanomedicine, vol.9, issue.8, pp.1131-1139, 2014.

A. Heydorn, A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov et al., Quantification of biofilm structures by the novel computer program, COMSTAT. Microbiology, vol.146, pp.2395-2407, 2000.

J. Kreth, E. Hagerman, K. Tam, J. Merritt, D. Wong et al., Quantitative analyses of Streptococcus mutans biofilms with quartz crystal microbalance, microjet impingement and confocal microscopy, Biofilms, vol.1, issue.4, pp.277-284, 2004.

J. Kreth, E. Hagerman, K. Tam, J. Merritt, D. T. Wong et al., Quantitative analyses of Streptococcus mutans biofilms with quartz crystal microbalance, microjet impingement and confocal microscopy, Biofilms, vol.1, issue.4, pp.277-284, 2004.

J. Siepmann and F. Siepmann, Mathematical modeling of drug release from lipid dosage forms, Int J Pharm, vol.418, issue.1, pp.42-53, 2011.

S. N. Rothstein, W. J. Federspiel, and S. R. Little, A simple model framework for the prediction of controlled release from bulk eroding polymer matrices, J Mater Chem, vol.18, issue.16, pp.1873-1880, 2008.

S. N. Rothstein, W. J. Federspiel, and S. R. Little, A unified mathematical model for the prediction of controlled release from surface and bulk eroding polymer matrices, Biomaterials, vol.30, issue.8, p.2, 2008.

D. Stephens, L. Li, D. Robinson, S. Chen, H. Chang et al., Investigation of the in vitro release of gentamicin from a polyanhydride matrix, J Controll Release, vol.63, issue.3, pp.205-214, 2000.

S. Fredenberg, M. Reslow, and A. Axelsson, Measurement of protein diffusion through poly(D, L-lactide-Co-glycolide), Pharm Dev Technol, vol.10, issue.2, pp.299-307, 2005.

A. Sionkowska, B. Kaczmarek, and R. Gadzala-kopciuch, Gentamicin release from chitosan and collagen composites, J Drug Deliv Sci Technol, vol.35, pp.353-359, 2016.

I. J. Macha, S. Cazalbou, B. Ben-nissan, K. L. Harvey, and B. Milthorpe, Marine structure derived calcium phosphate-polymer biocomposites for local antibiotic delivery, Mar drugs, vol.13, issue.1, pp.666-680, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02496992

I. Karacan, I. J. Macha, G. Choi, S. Cazalbou, and B. Ben-nissan, Antibiotic containing poly lactic acid/hydroxyapatite biocomposite coatings for dental implant applications, Key Eng Mater, vol.758, pp.120-125, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02401568