Coupled Experimental and Computational Approach for CABRI Power Transients Analysis - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue IEEE Transactions on Nuclear Science Année : 2018

Coupled Experimental and Computational Approach for CABRI Power Transients Analysis

Résumé

CABRI is an experimental pulse reactor, funded by the French Nuclear Safety and Radioprotection Institute and operated by Commissariat à l'Énergie Atomique et aux Énergies Alternatives at the Cadarache Research Center. It is designed to study fuel behavior under reactivity-initiated accident conditions. In order to produce the power transients, reactivity is injected by depressurization of a neutron absorber (3 He) situated in the so-called transient rods inside the reactor core. The CABRI reactivity injection system allows us to generate structured tran-sients based on specific sequences of depressurization. For such transients, the time difference between the openings of two valves of the reactivity injection system has an important impact on the power pulse shape. A kinetic point code, SPARTE, was developed in order to replace the older DULCINEE code dedicated to the modeling and prediction of CABRI power transients. The SPARTE code includes new models of 3 He depressurization based on CFD calculations, variable Doppler coefficient based on Monte Carlo calculations, and variable axial neutron flux profile. The density and Doppler models have a large impact on power transient prediction. For low initial pressure transients, the major uncertainty comes from the reactivity injected by the 3 He depressurization. For high initial pressure transients, the 3 He heating during the power pulse ("TOP effect") is responsible of an additional injection of reactivity that needs to be modeled precisely.
Fichier principal
Vignette du fichier
201700003585.pdf (2.58 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02429520 , version 1 (18-03-2020)

Identifiants

Citer

Olivier Clamens, Patrick Blaise, Jean-Pascal Hudelot, Johann Lecerf, Bertrand Duc, et al.. Coupled Experimental and Computational Approach for CABRI Power Transients Analysis. IEEE Transactions on Nuclear Science, 2018, 65 (9), pp.2434-2442. ⟨10.1109/tns.2018.2847331⟩. ⟨hal-02429520⟩
57 Consultations
137 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More