S. Chapman, M. Dobrovolskaia, K. Farahani, A. Goodwin, A. Joshi et al., Nanoparticles for cancer imaging: The good, the bad, and the promise, Nano Today, vol.8, pp.454-460, 2013.

V. K. Sreenivasan, A. V. Zvyagin, and E. M. Goldys, Luminescent nanoparticles and their applications in the life sciences, J. Phys.: Condens. Matter, vol.25, p.194101, 2013.

D. Kim, J. Kim, Y. Park, N. Lee, and T. Hyeon, Recent development of inorganic nanoparticles for biomedical imaging, ACS Cent. Sci, vol.4, pp.324-336, 2018.

J. Li and J. Zhu, Quantum dots for fluorescent biosensing and bio-imaging applications, Analyst, vol.138, pp.2506-2515, 2013.

C. Fu, H. Lee, K. Chen, T. Lim, H. Wu et al., Characterization and application of single fluorescent nanodiamonds as cellular biomarkers, PNAS USA, vol.104, pp.727-732, 2007.

Y. Yeh, B. Creran, and V. M. Rotello, Gold nanoparticles: preparation, properties, and applications in bionanotechnology, Nanoscale, vol.4, pp.1871-1880, 2012.

F. Wang, W. B. Tan, Y. Zhang, X. P. Fan, and M. Q. Wang, Luminescent nanomaterials for biological labelling, vol.17, pp.1-13, 2006.

F. Oltolina, L. Gregoletto, D. Colangelo, J. Gómez-morales, J. M. Delgado-lópez et al., Monoclonal antibody-targeted fluorescein-5-isothiocyanate-labeled biomimetic nanoapatites: a promising fluorescent probe for imaging applications, Langmuir, vol.31, pp.1766-1775, 2015.

A. Al-kattan, V. Santran, P. Dufour, J. Dexpert-ghys, and C. Drouet, Novel contributions on luminescent apatite-based colloids intended for medical imaging, J. Biomater. Appl, vol.28, issue.5, pp.697-707, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01073123

A. Al-kattan, P. Dufour, J. Dexpert-ghys, and C. Drouet, Preparation and physicochemical characteristics of luminescent apatite-based colloids, J. Phys. Chem. C, vol.114, pp.2918-2924, 2010.

S. Padilla-mondéjar, A. Kovtuna, and M. Epple, Lanthanide-doped calcium phosphate nanoparticles with high internal crystallinity and with a shell of DNA as fluorescent probes in cell experiments, J. Mater. Chem, vol.17, pp.4153-4159, 2007.

Y. Fang, A. Xu, R. Song, H. Zhang, L. You et al., Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires, JACS, vol.125, pp.16025-16034, 2003.

Q. Luo, S. Shen, G. Lu, X. Xiao, D. Mao et al., Synthesis of cubic ordered mesoporous YPO4:Ln 3+ and their photoluminescence properties, J. Mater. Chem, vol.19, pp.8079-8085, 2009.

F. Zhang and S. S. Wong, Ambient large-scale template-mediated synthesis of highaspect ratio single-crystalline, chemically doped rare-earth phosphate nanowires for bioimaging, ACS Nano, vol.4, pp.99-112, 2010.

S. S. Syamchand and G. Sony, Europium enabled luminescent nanoparticles for biomedical applications, J. Lumin, vol.165, pp.190-215, 2015.

H. Ito, Y. Fujishiro, T. Sato, and A. Okuwaki, Preparation of lanthanide orthophosphates by homogeneous precipitation under hydrothermal conditions using lanthanide-EDTA chelates, Br. Ceram. Trans, vol.94, pp.146-150, 1995.

R. Kijkowska, E. Cholewka, and B. Duszak, X-ray diffraction and Ir-absorption characteristics of lanthanide orthophosphates obtained by crystallisation from phosphoric acid solution, J. Mater. Sci, vol.38, pp.223-228, 2003.

N. Clavier, R. Podor, and N. Dacheux, Crystal chemistry of the monazite structure, J. Eur. Ceram. Soc, vol.31, pp.941-976, 2011.

W. Bu, L. Zhang, Z. Hua, H. Chen, and J. Shi, Synthesis and characterization of uniform spindle-shaped microarchitectures self-assembled from aligned single-crystalline nanowires of lanthanum phosphates, Cryst. Growth Des, vol.7, pp.2305-2309, 2007.

Y. Fang, A. Xu, and W. Dong, Highly improved green photoluminescence from CePO 4 :Tb/LaPO 4 core/shell nanowires, Small, vol.1, pp.967-971, 2005.

W. Bu, Z. Hua, H. Chen, and J. Shi, Epitaxial synthesis of uniform cerium phosphate one-dimensional nanocable heterostructures with improved luminescence, J. Phys. Chem. B, vol.109, pp.14461-14464, 2005.

N. O. Nuñez, S. R. Liviano, and M. Ocaña, J. Coll. Interf. Sci, vol.349, pp.484-491, 2010.

C. Yu, M. Yu, C. Li, X. Liu, J. Yang et al., Citrate mediated synthesis of uniform monazite LnPO 4 (Ln = La, Ce) and Ln:LaPO 4 (Ln = Eu, Ce, Ce + Tb) spheres and their photoluminescence, J. Solid State Chem, vol.182, pp.339-342, 2009.

X. Wang and M. Gao, Facile sonochemical synthesis and photoluminescent properties of lanthanide orthophosphate nanoparticles, J. Mater. Chem, vol.16, pp.1360-1365, 2006.

Z. Hou, L. Wang, H. Lian, R. Chai, C. Zhang et al., Preparation and luminescence properties of Ce 3+ and/or Tb 3+ doped LaPO 4 nanofibers and microbelts by electrospinning, J. Solid State Chem, vol.182, pp.698-708, 2009.

Y. Xing, M. Li, S. A. Davis, and S. Mann, Synthesis and characterization of cerium phosphate nanowires in microemulsion reaction media, J. Phys. Chem. B, vol.110, pp.1111-1113, 2006.

X. Liu, Q. Wang, Z. Gao, J. Sun, and J. Shen, Fabrication of lanthanide phosphate nanocrystals with well-controlled morphologies by layer-by-layer adsorption and reaction method at room temperature, Cryst. Growth & Des, vol.9, issue.8, pp.3707-3713, 2009.

C. Zollfrank, H. Scheel, S. Brungs, and P. Greil, Europium(III) Orthophosphates: synthesis, characterization, and optical properties, Cryst. Growth Des, vol.8, issue.3, pp.766-770, 2008.

W. Di, X. Wang, P. Zhu, and B. Chen, Energy transfer and heat-treatment effect of photoluminescence in Eu 3+ -doped TbPO 4 nanowires, J. Solid State Chem, vol.180, pp.467-473, 2007.

I. V. Tananaiev and Z. Vasilieva, Neorgan. Khim. (Russ), vol.9, p.213, 1964.

R. Kijkowska, Ca-substituted europium(III) phosphate monohydrate obtained through crystallisation from phosphoric acid solution, J. Alloys Comp, vol.363, pp.138-142, 2004.

A. Al-kattan, S. Girod-fullan, C. Charvillat, H. Ternet-fontebasso, P. Dufour et al., Biomimetic nanocrystalline apatites: emerging perspectives in cancer diagnosis and treatment, Int. J. Pharm, vol.423, pp.26-36, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00757172

J. Gómez-morales, M. Iafisco, J. M. Delgado-lópez, S. Sarda, and C. Drouet, Progress on the preparation of nanocrystalline apatites and surface characterization: overview of fundamental and applied aspects, Prog. Cryst. Growth Charact. Mater, vol.59, pp.1-46, 2013.

M. Iafisco, J. M. Delgado-lópez, E. M. Varoni, A. Tampieri, L. Rimondini et al., Cell surface receptor targeted biomimetic apatite nanocrystals for cancer therapy, Small, vol.9, pp.3834-3844, 2013.

M. Iafisco, M. Marchetti, J. Morales, M. A. Hernández-hernández, J. M. Ruiz et al., Silica gel template for calcium phosphates crystallization, Cryst. Growth & Des, vol.9, pp.4912-4921, 2009.

G. B. Ramírez-rodríguez, J. M. Delgado-lópez, and J. Gómez-morales, Evolution of calcium phosphate precipitation in hanging drop vapor diffusion by in situ Raman microspectroscopy, CrystEngComm, vol.15, pp.2206-2212, 2013.

J. M. Delgado-lópez, M. Iafisco, I. Rodríguez, M. Prat, J. Gómez-morales et al., Crystallization of bioinspired citrate-functionalized nanoapatites with tailored carbonate content, Acta Biomaterialia, vol.8, pp.3491-3499, 2012.

F. J. Martínez-casado, M. Iafisco, J. M. Delgado-lópez, C. Martínez-benito, C. Ruiz-pérez et al., Bioinspired citrate-apatite nanocrystals doped with divalent transition metal ions, Cryst. Growth Des, vol.1, pp.145-153, 2016.

J. Gómez-morales, C. Verdugo-escamilla, R. Fernández-penas, C. M. Parra-milla, C. Drouet et al., Luminescent biomimetic citrate-coated europium doped carbonated apatite nanoparticles for use in bioimaging: physico-chemistry and cytocompatibility, RSC Adv, vol.8, issue.5, pp.2385-2397, 2018.

Y. Y. Hu, A. Rawal, and K. Schmidt-rohr, Strongly bound citrate stabilizes the apatite nanocrystals in bone, Proc. Natl. Acad. Sci. USA, vol.107, pp.22425-22429, 2010.

A. A. Coelho, Academic: an optimization program integrating computer algebra and crystallographic objects written in C++, J. Appl. Cryst, vol.51, pp.210-218, 2018.

D. Ectors, F. Goetz-neunhoeffer, and J. Neubauer, A generalized geometric approach to anisotropic peak broadening due to domain morphology, J. Appl. Cryst, vol.48, pp.189-194, 2015.

D. Ectors, F. Goetz-neunhoeffer, and J. Neubauer, Domain size anisotropy in the double-Voigt approach: an extended model, J. Appl. Cryst, vol.48, pp.1998-2001, 2015.

C. Combes, R. Bareille, and C. Rey, Calcium carbonate-calcium phosphate mixed cement compositions for bone reconstruction, J. Biomed. Mater. Res. Part A, vol.79, pp.318-328, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00467129

S. Lucas, E. Champion, D. Bernache-assollant, and G. Leroy, Rare earth phosphate powders RePO 4 ÁnH 2 O (Re=La, Ce or Y) II. Thermal behavior, J. Solid State Chem, vol.177, pp.1312-1320, 2004.

J. Cho and C. H. Kim, Solid-state phase transformation mechanism from hexagonal GdPO4:Eu 3+ nanorods to monoclinic nanoparticles, vol.4, pp.31385-31392, 2014.

R. Kijkowska, Thermal decomposition of lanthanide orthophosphates synthesized through crystallisation from phosphoric acid solution, Thermochim. Acta, vol.404, pp.81-88, 2003.

M. T. Colomer, I. Delgado, A. L. Ortiz, and J. C. Fariñas, Microwave-assisted hydrothermal synthesis of single-crystal nanorods of rhabdophane-type Srdoped LaPO 4 .nH 2 O, J. Am. Ceram. Soc, vol.97, issue.3, pp.750-758, 2014.

N. Kumar-sahu, R. S. Ningthoujam, and D. Bahadur, Disappearance and recovery of luminescence in GdPO 4 :Eu 3+ nanorods: Propose to water/OH release under near infrared and gamma irradiations, J. Appl. Phys, vol.112, p.14306, 2012.

G. Socrates, Infrared and raman characteristics group frequencies. tables and charts, 2001.

P. Ivachenko, J. M. Delgado-lópez, M. Iafisco, J. Gómez-morales, A. Tampieri et al., On the surface effects of citrates on nano-apatites: evidence of a decreased hydrophilicity, Sci. Rep, vol.7, p.8901, 2017.

M. Sato and S. Matsuda, structure of vaterite and infrared spectra, Z. Kristallograph, vol.129, pp.405-410, 1969.

M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall et al., Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts, Proc. Natl. Acad. Sci. USA, vol.105, pp.14265-14270, 2008.

C. L. Mooney, X-ray diffraction study of cerium phosphate and related crystals. I. hexagonal modification, Acta Cryst, vol.3, pp.337-340, 1950.

L. Veselinovic, L. Karanovic, Z. Stojanovic, I. Bra?ko, S. Markovic et al., Crystal structure of cobalt-substituted calcium hydroxyapatite nanopowders prepared by hydrothermal processing, J. Appl. Crystallogr, vol.43, pp.320-327, 2010.

I. Hemmilä, S. Dakubu, V. Mukkala, H. Siitaria, and T. Lövgrena, Europium as a label in time-resolved immunofluorometric assays, Anal. Biochem, vol.137, pp.335-343, 1984.

F. S. Richardson, Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems, Chem. Revs, vol.82, pp.541-552, 1982.

A. Al-katan, V. Santran, P. Dufour, J. Dexpert-ghys, and C. Drouet, Novel contributions on luminescent apatite-based colloids intended for medical imaging, J. Biomater. Appl, vol.28, pp.697-707, 2014.

W. T. Carnall, P. R. Fields, and K. Rajnak, Electronic Energy Levels of the Trivalent Lanthanide Aquo Ions. III. Tb 3+, J. Chem. Phys, vol.49, pp.4424-4442, 1968.

W. T. Carnall, P. R. Fields, and K. Rajnak, Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm 3+ , Sm 3+ , Eu 3+ , Gd 3+ , Tb 3+ , Dy 3+ , and Ho 3+, J. Chem. Phys, vol.49, pp.4412-4423, 1968.

J. Singh and J. Manam, Structural and spectroscopic behaviour of Eu 3+ -doped SrGd 2 O 4 modified by thermal treatments, J. Mater. Sci, vol.51, pp.2886-2901, 2016.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2006.

G. G. Guilbault, General aspects of luminescence spectroscopy, Practical Fluorescence, Marcel Dekker, 1990.

, ISO 10993-5 Biological Evaluation of Medical Devices Part 5: Tests for In Vitro Cytotoxicity (International Standard Organization, 2009.

M. I. Khan, A. Mohammad, G. Patil, S. A. Naqvi, L. K. Chauhan et al., Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles, Biomaterials, vol.33, pp.1477-1488, 2012.

M. Nedyalkova, B. Donkova, J. Romanova, G. Tzvetkov, S. Madurga et al., Iron oxide nanoparticles -in vivo/in vitro biomedical applications and in silico studies Adv, Coll. Interf. Sci, vol.249, pp.192-212, 2017.

F. Chen, P. Huang, Y. J. Zhu, J. Wu, C. L. Zhang et al., The photoluminescence, drug delivery and imaging properties of multifunctional Eu 3+ /Gd 3+ dual-doped hydroxyapatite nanorods, Biomaterials, vol.32, pp.9031-9039, 2011.

C. Rosticher, B. Viana, T. Maldiney, C. Richard, and C. Chanéac, Persistent luminescence of Eu, Mn, Dy doped calcium phosphates for in-vivo optical imaging, J Lumin, vol.70, pp.460-466, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01492707