M. Agueh and G. Carlier, Barycenters in the Wasserstein space, SIAM Journal on Mathematical Analysis, vol.43, pp.904-924, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00637399

P. C. Álvarez-esteban, E. Barrio, J. Cuesta-albertos, and C. Matrán, A fixed-point approach to barycenters in Wasserstein space, Journal of Mathematical Analysis and Applications, vol.441, pp.744-762, 2016.

J. Bion-nadal and D. Talay, On a Wasserstein-type distance between solutions to stochastic differential equations, Ann. Appl. Probab, vol.29, pp.1609-1639, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01636082

N. Bonneel, J. Rabin, G. Peyré, and H. Pfister, Sliced and Radon Wasserstein barycenters of measures, Journal of Mathematical Imaging and Vision, vol.51, pp.22-45, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00881872

Y. Chen, T. T. Georgiou, and A. Tannenbaum, Optimal Transport for Gaussian Mixture Models, IEEE Access, vol.7, pp.6269-6278, 2019.

Y. Chen, J. Ye, and J. Li, Aggregated Wasserstein Distance and State Registration for Hidden Markov Models, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.

J. Delon and A. Houdard, In this experiment, the top left image is modified in such a way that its color palette goes through the GW2-barycenters between the color palettes of the four corner images. Each color palette is represented as a mixture of 10 Gaussian components. The weights used for the barycenters are bilinear with respect to the four corners of the rectangle. and Video, pp.125-149, 2018.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society: Series B (Methodological), vol.39, pp.1-22, 1977.

D. Dowson and B. Landau, The Fréchet distance between multivariate normal distributions, Journal of multivariate analysis, vol.12, pp.450-455, 1982.

R. Flamary and N. Courty, POT Python Optimal Transport library, 2017.

B. Galerne, A. Leclaire, and J. Rabin, Semi-discrete optimal transport in patch space for enriching Gaussian textures, International Conference on Geometric Science of Information, pp.100-108, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01560785

W. Gangbo and A. ?wikech, Optimal maps for the multidimensional Monge-Kantorovich problem, Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, vol.51, pp.23-45, 1998.

L. A. Gatys, A. S. Ecker, and M. Bethge, Texture synthesis using convolutional neural networks, in NIPS, 2015.

A. Houdard, C. Bouveyron, and J. Delon, High-dimensional mixture models for unsupervised image denoising (HDMI), SIAM Journal on Imaging Sciences, vol.11, pp.2815-2846, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01544249

G. Peyré and M. Cuturi, Computational optimal transport, Foundations and Trends R in Machine Learning, vol.11, pp.355-607, 2019.

J. Rabin, J. Delon, and Y. Gousseau, Removing artefacts from color and contrast modifications, IEEE Transactions on Image Processing, vol.20, pp.3073-3085, 2011.

J. Rabin, G. Peyré, J. Delon, and M. Bernot,

, International Conference on Scale Space and Variational Methods in Computer Vision, pp.435-446, 2011.

L. Rüschendorf and L. Uckelmann, On the n-coupling problem, Journal of multivariate analysis, vol.81, pp.242-258, 2002.

F. Santambrogio, Optimal Transport for Applied Mathematicians, 2015.

A. M. Teodoro, M. S. Almeida, and M. A. Figueiredo, Single-frame Image Denoising and Inpainting Using Gaussian Mixtures, ICPRAM, pp.283-288, 2015.

C. Villani, Topics in Optimal Transportation Theory, vol.58, 2003.

C. Villani, Optimal transport: old and new, vol.338, 2008.

Y. Wang and J. Morel, SURE Guided Gaussian Mixture Image Denoising, vol.6, pp.999-1034, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00785334

G. Xia, S. Ferradans, G. Peyré, and J. Aujol, Synthesizing and mixing stationary Gaussian texture models, SIAM Journal on Imaging Sciences, vol.7, pp.476-508, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00988761

S. J. Yakowitz and J. D. Spragins, On the identifiability of finite mixtures, Ann. Math. Statist, vol.39, pp.209-214, 1968.

G. Yu, G. Sapiro, and S. Mallat, Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity, IEEE Trans. Image Process, vol.21, pp.2481-99, 2012.

D. Zoran and Y. Weiss, From learning models of natural image patches to whole image restoration, Conf. Comput. Vis., IEEE, pp.479-486, 2011.