High-Dimensional Mixture Models For Unsupervised Image Denoising (HDMI)

Abstract : This work addresses the problem of patch-based image denoising through the unsupervised learning of a probabilistic high-dimensional mixture models on the noisy patches. The model, named hereafter HDMI, proposes a full modeling of the process that is supposed to have generated the noisy patches. To overcome the potential estimation problems due to the high dimension of the patches, the HDMI model adopts a parsimonious modeling which assumes that the data live in group-specific subspaces of low dimension-alities. This parsimonious modeling allows in turn to get a numerically stable computation of the conditional expectation of the image which is applied for denoising. The use of such a model also permits to rely on model selection tools, such as BIC, to automatically determine the intrinsic dimensions of the subspaces and the variance of the noise. This yields a blind denoising algorithm that demonstrates state-of-the-art performance, both when the noise level is known and unknown.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01544249
Contributeur : Antoine Houdard <>
Soumis le : mercredi 30 août 2017 - 14:24:04
Dernière modification le : mercredi 11 octobre 2017 - 01:17:05

Fichier

HDMI_HAL_version.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01544249, version 2

Citation

Antoine Houdard, Charles Bouveyron, Julie Delon. High-Dimensional Mixture Models For Unsupervised Image Denoising (HDMI). 2017. 〈hal-01544249v2〉

Partager

Métriques

Consultations de la notice

169

Téléchargements de fichiers

58