Lossless compaction of model execution traces

Abstract : Dynamic verification and validation (V&V) techniques are used to verify and validate the behavior of software systems early in the development process. In the context of model-driven engineering, such behaviors are usually defined using executable domain-specific modeling languages (xDSML). Many V&V techniques rely on execution traces to represent and analyze the behavior of executable models. Traces, however, tend to be overwhelmingly large, hindering effective and efficient analysis of their content. While there exist several trace metamodels to represent execution traces, most of them suffer from scalability problems. In this paper, we present a generic compact trace representation format called generic compact trace metamodel (CTM) that enables the construction and manipulation of compact execution traces of executable models. CTM is generic in the sense that it supports a wide range of xDSMLs. We evaluate CTM on traces obtained from real-world fUML models. Compared to existing trace metamodels, the results show a significant reduction in memory and disk consumption. Moreover, CTM offers a common structure with the aim to facilitate interoperability between existing trace analysis tools.
Document type :
Journal articles
Complete list of metadatas

Cited literature [86 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-02174930
Contributor : Erwan Bousse <>
Submitted on : Tuesday, July 16, 2019 - 10:02:02 AM
Last modification on : Wednesday, September 25, 2019 - 10:20:07 AM

File

 Restricted access
To satisfy the distribution rights of the publisher, the document is embargoed until : 2020-06-08

Please log in to resquest access to the document

Identifiers

Citation

Fazilat Hojaji, Bahman Zamani, Abdelwahab Hamou-Lhadj, Tanja Mayerhofer, Erwan Bousse. Lossless compaction of model execution traces. Software and Systems Modeling, Springer Verlag, 2019, ⟨10.1007/s10270-019-00737-w⟩. ⟨hal-02174930⟩

Share

Metrics

Record views

33