Y. R. Luo, Comprehensive handbook of chemical bond energies, 2007.
DOI : 10.1201/9781420007282

C. W. Jones, Applications of Hydrogen Peroxide and Derivatives: Royal Society of Chemistry, 2007.

A. Pasini, L. Torre, L. Romeo, A. Cervone, D. Agostino et al., Testing and Characterization of a Hydrogen Peroxide Monopropellant Thruster, J Propuls Pow, vol.24, pp.507-522, 2008.
DOI : 10.2514/1.33121

B. Rajakumar, D. C. Mccabe, R. K. Talukdar, and A. R. Ravishankara, Rate coefficients for the reactions of OH with n-propanol and iso-propanol between 237 and 376 K, Int J Chem Kinet, vol.42, p.1024, 2010.

R. Sivaramakrishnan, N. K. Srinivasan, M. C. Su, and J. V. Michael, High temperature rate constants for OH + alkanes, Proc Combust Inst, vol.32, pp.107-121, 2009.
DOI : 10.1016/j.proci.2008.05.018

H. R. Williams and H. S. Mosher, Peroxides. I. n-Alkyl Hydroperoxides, J Am Chem Soc, vol.76, pp.2984-2991, 1954.

H. R. Williams and H. S. Mosher, Organic Peroxides. II. Secondary Alkyl Hydroperoxides, J Am Chem Soc, vol.76, pp.2987-90, 1954.

M. Lee, B. G. Heikes, D. O'sullivan, X. Zhou, and Y. N. Lee, Hydrogen peroxide and organic hydroperoxide in the troposphere: a review, Atmos Environ, vol.34, pp.265-72, 1992.

G. L. Kok, S. E. Mclaren, and T. A. Stafflbach, HPLC Determination of Atmospheric Organic Hydroperoxides, J Atmos Ocean Tech, vol.12, pp.282-291, 1995.
DOI : 10.1175/1520-0426(1995)012<0282:hdoaoh>2.0.co;2

S. Kyasa, B. W. Puffer, and P. H. Dussault, Synthesis of Alkyl Hydroperoxides via Alkylation of gemDihydroperoxides, J Org Chem, vol.78, pp.3452-3458, 2013.

G. L. Vaghjiani and A. R. Ravishankara, Kinetics and mechanism of hydroxyl radical reaction with methyl hydroperoxide, J Phys Chem, vol.93, pp.1948-59, 1989.
DOI : 10.1021/j100342a050

J. D. Crounse, L. B. Nielsen, S. Jørgensen, H. G. Kjaergaard, and P. O. Wennberg, Autoxidation of Organic Compounds in the Atmosphere, J Phys Chem Lett, vol.4, pp.3513-3533, 2013.

S. Hui, Y. Taguchi, S. Takeda, F. Ohkawa, T. Sakurai et al., Quantitative determination of phosphatidylcholine hydroperoxides during copper oxidation of LDL and HDL by liquid chromatography/mass spectrometry, Anal Bioanal Chem, vol.403, pp.1831-1871, 2012.

S. Zhou, J. C. Rivera-rios, F. N. Keutsch, and J. Abbatt, Identification of organic hydroperoxides and peroxy acids using atmospheric pressure chemical ionization-tandem mass spectrometry (APCI-MS/MS): application to secondary organic aerosol, Atmos Meas Tech, vol.11, pp.3081-3090, 2018.
DOI : 10.5194/amt-11-3081-2018

URL : https://www.atmos-meas-tech.net/11/3081/2018/amt-11-3081-2018.pdf

S. Hui, T. Sakurai, F. Ohkawa, H. Furumaki, J. S. Fuda et al., Detection and characterization of cholesteryl ester hydroperoxides in oxidized LDL and oxidized HDL by use of an Orbitrap mass spectrometer, Anal Bioanal Chem, vol.404, pp.101-113, 2012.

J. H. Lee, D. F. Leahy, I. N. Tang, and L. Newman, Measurement and speciation of gas phase peroxides in the atmosphere, J Geophys Res, vol.98, pp.2911-2916, 1993.

D. Serves and C. , Gas phase formaldehyde and peroxide measurements in the Arctic atmosphere, J Geophys Res, vol.99, pp.25391-25399, 1994.

F. Sauer, J. Beck, G. Schuster, and G. K. Moortgat, Hydrogen peroxide, organic peroxides and organic acids in a forested area during FIELDVOC'94, Chemosphere -Global Change Sci, vol.3, pp.309-335, 2001.
DOI : 10.1016/s1465-9972(01)00013-7

J. Guo, A. Tilgner, C. Yeung, Z. Wang, P. Louie et al., Atmospheric Peroxides in a Polluted Subtropical Environment: Seasonal Variation, Sources and Sinks, and Importance of Heterogeneous Processes, Environ Sci Technol, vol.48, pp.1443-50, 2014.

P. O. Wennberg, T. F. Hanisco, L. Jaeglé, D. J. Jacob, E. J. Hintsa et al., Hydrogen Radicals, Nitrogen Radicals, and the Production of O3 in the Upper Troposphere, Science, vol.279, pp.49-53, 1998.

H. B. Singh, M. Kanakidou, P. J. Crutzen, and D. J. Jacob, High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere, Nature, vol.378, p.50, 1995.

A. V. Jackson and C. N. Hewitt, Atmosphere Hydrogen Peroxide and Organic Hydroperoxides: A Review, Crit Rev Environ Sci Technol, vol.29, pp.175-228, 1999.

H. J. Tobias and P. J. Ziemann, Thermal Desorption Mass Spectrometric Analysis of Organic Aerosol Formed from Reactions of 1-Tetradecene and O3 in the Presence of Alcohols and Carboxylic Acids, Environ Sci Technol, vol.34, pp.2105-2120, 2000.

M. Ehn, J. A. Thornton, E. Kleist, M. Sipilä, H. Junninen et al., A large source of lowvolatility secondary organic aerosol, Nature, vol.506, p.476, 2014.

M. Krapf, E. Haddad, I. , B. Emily, A. Molteni et al., Labile Peroxides in Secondary Organic Aerosol, Chem, vol.1, pp.603-619, 2016.

K. S. Docherty, W. Wu, Y. B. Lim, and P. J. Ziemann, Contributions of Organic Peroxides to Secondary Aerosol Formed from Reactions of Monoterpenes with O3, Environ Sci Technol, vol.39, p.404959, 2005.

H. Li, Z. Chen, L. Huang, and D. Huang, Organic peroxides' gas-particle partitioning and rapid heterogeneous decomposition on secondary organic aerosol, Atmos Chem Phys, vol.16, pp.1837-1885, 2016.

R. Atkinson, D. L. Baulch, R. A. Cox, H. Rf, J. A. Kerr et al., Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement IV. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry, J Phys Chem Ref Data, vol.21, pp.1125-568, 1992.
DOI : 10.1016/0960-1686(92)90383-v

J. A. Logan, M. J. Prather, S. C. Wofsy, and M. B. Mcelroy, Tropospheric chemistry: A global perspective, J Geophys Res, vol.86, pp.7210-54, 1981.
DOI : 10.1029/jc086ic08p07210

URL : https://cloudfront.escholarship.org/dist/prd/content/qt7fz460x3/qt7fz460x3.pdf?t=n476fm

L. I. Kleinman, Photochemical formation of peroxides in the boundary layer, J Geophys Res, vol.91, pp.10889-904, 1986.

L. I. Kleinman, Seasonal dependence of boundary layer peroxide concentration: The low and high NOx regimes, J Geophys Res, vol.96, pp.20721-20754, 1991.

K. J. Olszyna, J. F. Meagher, and E. M. Bailey, Gas-phase, cloud and rain-water measurements of hydrogen peroxide at a high-elevation site, Atmos Environ, vol.22, pp.1699-706, 1988.

H. Sakugawa and I. R. Kaplan, H2O2 and O3 in the atmosphere of Los Angeles and its vicinity: Factors controlling their formation and their role as oxidants of SO2, J Geophys Res, vol.94, pp.12957-73, 1989.

M. Das and V. P. Aneja, Measurements and analysis of concentrations of gaseous hydrogen peroxide and related species in the rural Central Piedmont region of North Carolina, Atmos Environ, vol.28, pp.2473-83, 1994.

B. A. Watkins, D. D. Parrish, M. Trainer, R. B. Norton, J. E. Yee et al., Factors influencing the concentration of gas phase hydrogen peroxide during the summer at Niwot Ridge, Colorado, J Geophys Res, vol.100, pp.22831-22871, 1995.

B. A. Watkins, D. D. Parrish, S. Buhr, R. B. Norton, M. Trainer et al., Factors influencing the concentration of gas phase hydrogen peroxide during the summer at Kinterbish, Alabama, J Geophys Res, vol.100, pp.22841-51, 1995.

T. Gnauk, W. Rolle, and G. Spindler, Diurnal Variations of Atmospheric Hydrogen Peroxide Concentrations in Saxony (Germany), J Atmos Chem, vol.27, pp.79-103, 1997.

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson et al., Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I -gas phase reactions of Ox, HOx, NOx and SOx species, Atmos Chem Phys, vol.4, pp.1461-738, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00295495

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson et al., Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II -gas phase reactions of organic species, Atmos Chem Phys, vol.6, pp.3625-4055, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00296018

K. H. Becker, K. J. Brockmann, and J. Bechara, Production of hydrogen peroxide in forest air by reaction of ozone with terpenes, Nature, vol.346, pp.256-264, 1990.

K. H. Becker, J. Bechara, and K. J. Brockmann, Studies on the formation of H2O2 in the ozonolysis of alkenes, Atmos Environ, vol.27, pp.57-61, 1993.

S. Gäb, E. Hellpointner, W. V. Turner, and F. Ko?te, Hydroxymethyl hydroperoxide and bis(hydroxymethyl) peroxide from gas-phase ozonolysis of naturally occurring alkenes, Nature, vol.316, pp.535-541, 1985.

S. Hatakeyama, H. Lai, S. Gao, and K. Murano, Production of Hydrogen Peroxide and Organic Hydroperoxides in the Reactions of Ozone with Natural Hydrocarbons in Air, Chem Lett, vol.8, pp.1287-90, 1993.

C. N. Hewitt and G. L. Kok, Formation and occurrence of organic hydroperoxides in the troposphere: Laboratory and field observations, J Atmos Chem, vol.12, pp.181-94, 1991.

O. Horie, P. Neeb, S. Limbach, and G. K. Moortgat, Formation of formic acid and organic peroxides in the ozonolysis of ethene with added water vapour, Geophys Res Lett, vol.21, pp.1523-1529, 1994.

R. Simonaitis, K. J. Olszyna, and J. F. Meagher, Production of hydrogen peroxide and organic peroxides in the gas phase reactions of ozone with natural alkenes, Geophys Res Lett, vol.18, p.912, 1991.

A. C. Rousso, N. Hansen, A. W. Jasper, and Y. Ju, Low-temperature oxidation of ethylene by ozone in a jet-stirred reactor, J Phys Chem A, vol.122, pp.8674-85, 2018.

R. I. Martinez, J. T. Herron, and R. E. Huie, The mechanism of ozone-alkene reactions in the gas phase. A mass spectrometric study of the reactions of eight linear and branched-chain alkenes, J Am Chem Soc, vol.103, pp.3807-3827, 1981.

B. Long, J. L. Bao, and D. G. Truhlar, Atmospheric Chemistry of Criegee Intermediates: Unimolecular Reactions and Reactions with Water, J Am Chem Soc, vol.138, pp.14409-14431, 2016.
DOI : 10.1021/jacs.6b08655

A. Andersen and E. A. Carter, Hybrid Density Functional Theory Predictions of Low-Temperature Dimethyl Ether Combustion Pathways. II. Chain-Branching Energetics and Possible Role of the Criegee Intermediate, J Phys Chem A, vol.107, pp.9463-78, 2003.
DOI : 10.1560/yqm7-5e5m-523q-aqg2

D. L. Osborn and C. A. Taatjes, The physical chemistry of Criegee intermediates in the gas phase, Int Rev Phys Chem, vol.34, pp.309-60, 2015.

L. Xing, X. Zhang, Z. Wang, S. Li, and L. Zhang, New Insight into Competition between Decomposition Pathways of Hydroperoxymethyl Formate in Low Temperature DME Oxidation, Chin J Chem Phys, vol.28, pp.563-72, 2015.

L. Vereecken, The reaction of Criegee intermediates with acids and enols, Phys Chem Chem Phys, vol.19, pp.28630-28670, 2017.

Y. Sakamoto, S. Inomata, and J. Hirokawa, Oligomerization Reaction of the Criegee Intermediate Leads to Secondary Organic Aerosol Formation in Ethylene Ozonolysis, J Phys Chem A, vol.117, pp.12912-12933, 2013.

P. Neeb, O. Horie, and G. K. Moortgat, The Ethene?Ozone Reaction in the Gas Phase, J Phys Chem A, vol.102, pp.6778-85, 1998.

O. Welz, A. J. Eskola, L. Sheps, B. Rotavera, J. D. Savee et al., Rate Coefficients of C1 and C2 Criegee Intermediate Reactions with Formic and Acetic Acid Near the Collision Limit: Direct Kinetics Measurements and Atmospheric Implications, Angew Chem Int Ed, vol.53, pp.4547-50, 2014.

R. Chhantyal-pun, B. Rotavera, M. R. Mcgillen, M. Khan, A. J. Eskola et al., Criegee Intermediate Reactions with Carboxylic Acids: A Potential Source of Secondary Organic Aerosol in the Atmosphere, ACS Earth Space Chem, vol.2, pp.833-875, 2018.

L. Vereecken and J. S. Francisco, Theoretical studies of atmospheric reaction mechanisms in the troposphere, Chem Soc Rev, vol.41, pp.6259-93, 2012.

F. Liu, Y. Fang, M. Kumar, W. H. Thompson, and M. I. Lester, Direct observation of vinyl hydroperoxide, Phys Chem Chem Phys, vol.17, pp.20490-20494, 2015.
DOI : 10.1039/c5cp02917a

M. P. Rissanen, T. Kurtén, M. Sipilä, J. A. Thornton, J. Kangasluoma et al., The Formation of Highly Oxidized Multifunctional Products in the Ozonolysis of Cyclohexene, J Am Chem Soc, vol.136, pp.15596-606, 2014.

T. Jokinen, T. Berndt, R. Makkonen, V. Kerminen, H. Junninen et al., Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications, Proc Nat Acad Sci, vol.112, pp.7123-7131, 2015.

M. P. Rissanen, T. Kurtén, M. Sipilä, J. A. Thornton, O. Kausiala et al., Effects of Chemical Complexity on the Autoxidation Mechanisms of Endocyclic Alkene Ozonolysis Products: From Methylcyclohexenes toward Understanding ?-Pinene, J Phys Chem A, vol.119, pp.4633-50, 2015.

P. J. Ziemann, Aerosol products, mechanisms, and kinetics of heterogeneous reactions of ozone with oleic acid in pure and mixed particles, Faraday Discuss, vol.130, pp.469-90, 2005.

J. D. Surratt, S. M. Murphy, J. H. Kroll, N. L. Ng, L. Hildebrandt et al., Chemical Composition of Secondary Organic Aerosol Formed from the Photooxidation of Isoprene, J Phys Chem A, vol.110, pp.9665-90, 2006.

T. B. Nguyen, A. P. Bateman, D. L. Bones, S. A. Nizkorodov, J. Laskin et al., High-resolution mass spectrometry analysis of secondary organic aerosol generated by ozonolysis of isoprene, Atmos Environ, vol.44, pp.1032-1074, 2010.

A. P. Bateman, S. A. Nizkorodov, J. Laskin, and A. Laskin, Photolytic processing of secondary organic aerosols dissolved in cloud droplets, Phys Chem Chem Phys, vol.13, pp.12199-212, 2011.

P. Mertes, L. Pfaffenberger, J. Dommen, M. Kalberer, and U. Baltensperger, Development of a sensitive long path absorption photometer to quantify peroxides in aerosol particles (PeroxideLOPAP), Atmos Meas Tech, vol.5, pp.2339-2387, 2012.

S. A. Epstein, S. L. Blair, and S. A. Nizkorodov, Direct Photolysis of ?-Pinene Ozonolysis Secondary Organic Aerosol: Effect on Particle Mass and Peroxide Content, Environ Sci Technol, vol.48, pp.11251-11259, 2014.
DOI : 10.1021/es502350u

URL : https://doi.org/10.1021/es502350u

F. Paulot, J. D. Crounse, H. G. Kjaergaard, A. Kürten, . St et al., Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene, Science, vol.325, pp.730-733, 2009.

D. Taraborrelli, M. G. Lawrence, J. N. Crowley, T. J. Dillon, S. Gromov et al., Hydroxyl radical buffered by isoprene oxidation over tropical forests, Nat Geosci, vol.5, pp.190-193, 2012.
DOI : 10.1038/ngeo1405

B. Boss and R. Hazlett, n-Dodecane Oxidation-Elucidation by Internal Reference Techniques, Ind Eng Chem Prod Res Dev, vol.14, pp.135-143, 1975.
DOI : 10.1021/i360054a602

R. K. Jensen, S. Korcek, L. R. Mahoney, and M. Zinbo, Liquid-phase autoxidation of organic compounds at elevated temperatures. 1. The stirred flow reactor technique and analysis of primary products from n-hexadecane autoxidation at 120-180.degree.C, J Am Chem Soc, vol.101, p.757484, 1979.
DOI : 10.1002/kin.550260608

S. Blaine and P. E. Savage, Reaction pathways in lubricant degradation. 3. Reaction model for nhexadecane autoxidation, Ind Eng Chem Res, vol.31, pp.69-75, 1992.
DOI : 10.1021/ie00057a020

J. Pfaendtner and L. J. Broadbelt, Mechanistic Modeling of Lubricant Degradation, vol.1

, Structure?Reactivity Relationships for Free-Radical Oxidation, Ind Eng Chem Res, vol.47, pp.2886-96, 2008.

K. Bacha, A. Ben-amara, A. Vannier, M. Alves-fortunato, and M. Nardin, Oxidation Stability of Diesel/Biodiesel Fuels Measured by a PetroOxy Device and Characterization of Oxidation Products, Energy Fuels, vol.29, pp.4345-55, 2015.

R. K. Jensen, S. Korcek, M. Zinbo, and M. D. Johnson, Initiation in hydrocarbon autoxidation at elevated temperatures, Int J Chem Kinet, vol.22, pp.1095-107, 1990.
DOI : 10.1002/kin.550221008

J. M. Watkins, G. W. Mushrush, R. N. Hazlett, and E. J. Beal, Hydroperoxide formation and reactivity in jet fuels, Energy Fuels, vol.3, pp.231-237, 1989.
DOI : 10.1021/ef00014a018

S. Blaine and P. E. Savage, Reaction pathways in lubricant degradation. 1. Analytical characterization of n-hexadecane autoxidation products, Ind Eng Chem Res, vol.30, pp.792-800, 1991.
DOI : 10.1021/ie00057a020

K. Chatelain, A. Nicolle, B. Amara, A. Catoire, L. Starck et al., Wide Range Experimental and Kinetic Modeling Study of Chain Length Impact on n-Alkanes Autoxidation, Energy Fuels, vol.30, pp.1294-303, 2016.

G. Knothe and L. F. Razon, Biodiesel fuels, Prog Energy Combust Sci, vol.58, pp.36-59, 2017.

E. J. Hamilton, S. Korcek, L. R. Mahoney, and M. Zinbo, Kinetics and mechanism of the autoxidation of pentaerythrityl tetraheptanoate at 180-220°C, Int J Chem Kinet, vol.12, pp.577-603, 1980.

R. K. Jensen, S. Korcek, and M. Zinbo, Liquid-phase autoxidation of organic compounds at elevated temperatures. Absolute rate constant for intermolecular hydrogen abstraction in hexadecane autoxidation at 120-190°C, Int J Chem Kinet, vol.26, pp.673-80, 1994.

F. Battin-leclerc, Low-Temperature Combustion Mechanisms. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2015.
DOI : 10.1016/b978-0-12-409547-2.11531-8

S. Saxena and I. D. Bedoya, Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits, Prog Energy Combust Sci, vol.39, pp.457-88, 2013.
DOI : 10.1016/j.pecs.2013.05.002

M. Musculus, P. C. Miles, and L. M. Pickett, Conceptual models for partially premixed lowtemperature diesel combustion, Prog Energy Combust Sci, vol.39, pp.246-83, 2013.
DOI : 10.1016/j.pecs.2012.09.001

G. T. Kalghatgi, Developments in internal combustion engines and implications for combustion science and future transport fuels, Proc Combust Inst, vol.35, pp.101-116, 2015.
DOI : 10.1016/j.proci.2014.10.002

K. Zhang, C. Banyon, J. Bugler, H. J. Curran, A. Rodriguez et al., An updated experimental and kinetic modeling study of n-heptane oxidation, Combust Flame, vol.172, p.11635, 2016.
DOI : 10.1016/j.combustflame.2016.06.028

URL : https://hal.archives-ouvertes.fr/hal-01349454

P. G. Lignola and E. Reverchon, Cool flames, Prog Energy Combust Sci, vol.13, pp.75-96, 1987.

J. F. Griffiths and S. K. Scott, Thermokinetic interactions: Fundamentals of spontaneous ignition and cool flames, Prog Energy Combust Sci, vol.13, pp.161-97, 1987.

R. W. Walker and C. Morley, Basic chemistry of combustion, Comprehensive Chemical Kinetics: low-temperature combustion and autoignition, pp.1-124, 1997.
DOI : 10.1016/s0069-8040(97)80016-7

F. Battin-leclerc, Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates, Prog Energy Combust Sci, vol.34, pp.440-98, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00288708

J. Zádor, C. A. Taatjes, and R. X. Fernandes, Kinetics of elementary reactions in low-temperature autoignition chemistry, Prog Energy Combust Sci, vol.37, pp.371-421, 2011.

C. K. Westbrook, M. Mehl, W. J. Pitz, G. Kukkadapu, S. Wagnon et al., Multi-fuel surrogate chemical kinetic mechanisms for real world applications, Phys Chem Chem Phys, vol.20, p.10588606, 2018.
DOI : 10.1039/c7cp07901j

URL : https://doi.org/10.1039/c7cp07901j

R. T. Pollard and . Hydrocarbons, Comprehensive chemical kinetics: gas-phase combustion, pp.249-367, 1977.

O. Herbinet, S. Bax, P. Glaude, V. Carré, and F. Battin-leclerc, Mass spectra of cyclic ethers formed in the low-temperature oxidation of a series of n-alkanes, Fuel, vol.90, pp.528-563, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00724937

R. N. Pease, Characteristics of the non-explosive oxidation of propane and the butanes, J Am Chem Soc, vol.51, pp.1839-56, 1929.

H. J. Curran, P. Gaffuri, W. J. Pitz, and C. K. Westbrook, A Comprehensive Modeling Study of nHeptane Oxidation, Combust Flame, vol.114, pp.149-77, 1998.

E. Ranzi, T. Faravelli, P. Gaffuri, and A. Sogaro, Low-temperature combustion: Automatic generation of primary oxidation reactions and lumping procedures, Combust Flame, vol.102, pp.179-92, 1995.
DOI : 10.1016/0010-2180(94)00253-o

V. Warth, N. Stef, P. A. Glaude, F. Battin-leclerc, G. Scacchi et al., Computer-Aided Derivation of Gas-Phase Oxidation Mechanisms: Application to the Modeling of the Oxidation of nButane, Combust Flame, vol.114, pp.81-102, 1998.

S. M. Sarathy, C. K. Westbrook, M. Mehl, W. J. Pitz, C. Togbe et al., Comprehensive chemical kinetic modeling of the oxidation of 2-methylalkanes from C7 to C20, Combust Flame, vol.158, pp.2338-57, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02020213

H. J. Curran, Developing detailed chemical kinetic mechanisms for fuel combustion, Proc Combust Inst, 2018.
DOI : 10.1016/j.proci.2018.06.054

S. J. Klippenstein, From theoretical reaction dynamics to chemical modeling of combustion, Proc Combust Inst, vol.36, pp.77-111, 2017.

S. Sharma, S. Raman, and W. H. Green, Intramolecular Hydrogen Migration in Alkylperoxy and Hydroperoxyalkylperoxy Radicals: Accurate Treatment of Hindered Rotors, J Phys Chem A, vol.114, pp.5689-701, 2010.

A. Miyoshi, Systematic Computational Study on the Unimolecular Reactions of Alkylperoxy (RO2), J Phys Chem A, vol.115, pp.3301-3326, 2011.

S. M. Villano, L. K. Huynh, H. Carstensen, and A. M. Dean, High-Pressure Rate Rules for Alkyl + O2 Reactions. 2. The Isomerization, Cyclic Ether Formation, and ?-Scission Reactions of Hydroperoxy Alkyl Radicals, J Phys Chem A, vol.116, pp.5068-89, 2012.
DOI : 10.1021/jp3023887

M. Cord, B. Sirjean, R. Fournet, A. Tomlin, M. Ruiz-lopez et al., Improvement of the Modeling of the Low-Temperature Oxidation of n-Butane: Study of the Primary Reactions, J Phys Chem A, vol.116, pp.6142-58, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00717142

M. Cord, B. Husson, L. Huerta, J. C. Herbinet, O. Glaude et al., Study of the Low Temperature Oxidation of Propane, J Phys Chem A, vol.116, pp.12214-12242, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00771603

J. Bugler, K. P. Somers, E. J. Silke, and H. J. Curran, Revisiting the Kinetics and Thermodynamics of the Low-Temperature Oxidation Pathways of Alkanes: A Case Study of the Three Pentane Isomers, J Phys Chem A, vol.119, pp.7510-7537, 2015.

J. Bugler, B. Marks, O. Mathieu, R. Archuleta, A. Camou et al., An ignition delay time and chemical kinetic modeling study of the pentane isomers, Combust Flame, vol.163, p.13856, 2016.

J. Bugler, A. Rodriguez, O. Herbinet, F. Battin-leclerc, C. Togbé et al., An experimental and modelling study of n-pentane oxidation in two jet-stirred reactors: The importance of pressure-dependent kinetics and new reaction pathways, Proc Combust Inst, vol.36, pp.441-449, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02014680

S. Y. Mohamed, L. Cai, F. Khaled, C. Banyon, Z. Wang et al., Modeling Ignition of a Heptane Isomer: Improved Thermodynamics, Reaction Pathways, Kinetics, and Rate Rule Optimizations for 2-Methylhexane, J Phys Chem A, vol.120, pp.2201-2218, 2016.

N. Atef, G. Kukkadapu, S. Y. Mohamed, M. A. Rashidi, C. Banyon et al., A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics, Combust Flame, vol.178, pp.111-145, 2017.
DOI : 10.1016/j.combustflame.2016.12.029

URL : https://aran.library.nuigalway.ie/bitstream/10379/6872/4/iC8_manuscript-accepted.pdf

T. Bissoonauth, Z. Wang, M. Sy, J. Wang, B. Chen et al.,

, Methylcyclohexane pyrolysis and oxidation in a jet-stirred reactor, Proc Combust Inst, 2018.

E. Blurock and F. Battin-leclerc, Modeling Combustion with Detailed Kinetic Mechanisms, pp.17-57, 2013.
DOI : 10.1007/978-1-4471-5307-8_2

URL : https://hal.archives-ouvertes.fr/hal-01291918

L. Cai, H. Pitsch, S. Y. Mohamed, V. Raman, J. Bugler et al., Optimized reaction mechanism rate rules for ignition of normal alkanes, Combust Flame, vol.173, pp.468-82, 2016.
DOI : 10.1016/j.combustflame.2016.04.022

URL : https://aran.library.nuigalway.ie/bitstream/10379/6261/1/Rate_rules_final.pdf

S. M. Sarathy, A. Farooq, and G. T. Kalghatgi, Recent progress in gasoline surrogate fuels, Prog Energy Combust Sci, vol.65, pp.67-108, 2018.
DOI : 10.1016/j.pecs.2017.09.004

C. Zhou, Y. Li, E. O&apos;connor, K. P. Somers, S. Thion et al., A comprehensive experimental and modeling study of isobutene oxidation, Combust Flame, vol.167, pp.353-79, 2016.

X. Meng, A. Rodriguez, O. Herbinet, T. Wang, and F. Battin-leclerc, Revisiting 1-hexene lowtemperature oxidation, Combust Flame, vol.181, pp.283-99, 2017.
DOI : 10.1016/j.combustflame.2017.03.031

URL : https://hal.archives-ouvertes.fr/hal-01626412

A. Rodriguez, O. Frottier, O. Herbinet, R. Fournet, R. Bounaceur et al., Experimental and Modeling Investigation of the Low-Temperature Oxidation of Dimethyl Ether, J Phys Chem A, vol.119, pp.7905-7928, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01178238

S. M. Sarathy, P. Oßwald, N. Hansen, and K. Kohse-höinghaus, Alcohol combustion chemistry. Prog Energy Combust Sci, vol.44, pp.40-102, 2014.

A. Rodriguez, O. Herbinet, and F. Battin-leclerc, A study of the low-temperature oxidation of a long chain aldehyde: n-hexanal, Proc Combust Inst, vol.36, pp.365-72, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01464172

F. Battin-leclerc, O. Herbinet, P. Glaude, R. Fournet, Z. Zhou et al., Experimental Confirmation of the Low-Temperature Oxidation Scheme of Alkanes, Angew Chem Int Ed, vol.49, pp.3169-72, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00602130

N. N. Semenov, Some general considerations in connection with the chain-reaction theory, Trans Faraday Soc, vol.28, pp.818-840, 1932.

N. N. Semenov, Some Problems in Chemical Kinetics and Reactivity, vol.2, 1959.

J. Cartlidge and C. Tipper, Knock resistance and anti-knock with hydrocarbon fuels, Combust Flame, vol.5, pp.87-91, 1961.
DOI : 10.1016/0010-2180(61)90078-5

A. R. Burgess and R. Laughlin, The role of hydroperoxides as chain-branching agents in the cool-flame oxidation of n-heptane, Chem Com, vol.0, pp.769-70, 1967.

J. H. Knox, Low-temperature combustion phenomena, Photochemistry and reaction kinetics, pp.250-286, 1967.

A. Fish, Oxidation of organic compounds, vol.2, p.6985, 1968.

A. Fish, The Cool Flames of Hydrocarbons, Angew Chem Int Edit, vol.7, pp.45-60, 1968.

S. W. Benson, The kinetics and thermochemistry of chemical oxidation with application to combustion and flames, Prog Energy Combust Sci, vol.7, pp.125-159, 1981.

R. A. Cox and J. A. Cole, Chemical aspects of the autoignition of hydrocarbon-air mixtures, Combust Flame, vol.60, pp.109-132, 1985.

M. P. Halstead, L. J. Kirsch, A. Prothero, and C. P. Quinn, A mathematical model for hydrocarbon autoignition at high pressures, Proc R Soc Lond A, vol.346, pp.515-553, 1975.
DOI : 10.1098/rspa.1975.0189

W. J. Pitz, R. D. Wilk, C. K. Westbrook, and N. P. Cernansky, The oxidation of n-butane at low and intermediate temperatures: an experimental and modeling study, Western States Sections / The Combustion Institute Spring Meeting, 1988.

C. Chevalier, W. J. Pitz, J. Warnatz, C. K. Westbrook, and H. Melenk, Hydrocarbon ignition: Automatic generation of reaction mechanisms and applications to modeling of engine knock, Proc Combust Inst, vol.24, pp.93-101, 1992.

J. Cartlidge and C. Tipper, The role of peroxides in slow combustion of hydrocarbons, Proc Chem Soc, p.219, 1960.

J. Cartlidge and C. Tipper, Analysis of peroxides separation and identification by paper chromatography, Anal Chim Acta, vol.22, pp.106-116, 1960.
DOI : 10.1016/s0003-2670(00)88251-3

K. Sahetchian, R. Rigny, and N. Blin, Evaluation of Hydroperoxide Concentrations During the Delay of Autoignition in an Experimental Four Stroke Engine: Comparison with Cool Flame Studies in a Flow System, Combust Sci Technol, vol.60, pp.117-141, 1988.

K. A. Sahetchian, N. Blin, R. Rigny, A. Seydi, and M. Murat, The oxidation of n-butane and nheptane in a CFR engine. Isomerization reactions and delay of autoignition, Combust Flame, vol.79, pp.242-251, 1990.

C. Brock and D. Stanley, The Cooperative Fuels Research engine: Applications for education and research, J Aviat Technol Eng, vol.2, pp.130-135, 2012.
DOI : 10.5703/1288284314865

URL : https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1058&context=jate

H. J. Curran, P. Gaffuri, W. J. Pitz, C. K. Westbrook, and W. R. Leppard, Autoignition chemistry in a motored engine: An experimental and kinetic modeling study, Proc Combust Inst, vol.26, p.266977, 1996.
DOI : 10.1016/s0082-0784(96)80102-0

URL : https://digital.library.unt.edu/ark:/67531/metadc670530/m2/1/high_res_d/224306.pdf

Y. Zhang and A. L. Boehman, Oxidation of 1-butanol and a mixture of n-heptane/1-butanol in a motored engine, Combust Flame, vol.157, pp.1816-1840, 2010.

W. R. Leppard, The Autoignition Chemistry of n-Butane: An Experimental Study, SAE Transactions, vol.96, pp.934-57, 1987.

W. R. Leppard, The Chemical Origin of Fuel Octane Sensitivity, 1990.

B. Shankar, V. S. Sajid, M. Al-qurashi, K. Atef, N. Alkhesho et al., Primary Reference Fuels (PRFs) as Surrogates for Low Sensitivity Gasoline Fuels, 2016.

Z. Wang, B. Chen, K. Moshammer, D. M. Popolan-vaida, S. Sioud et al., nHeptane cool flame chemistry: Unraveling intermediate species measured in a stirred reactor and motored engine, Combust Flame, vol.187, pp.199-216, 2018.
DOI : 10.1016/j.combustflame.2017.09.003

URL : https://hal.archives-ouvertes.fr/hal-02015897

K. A. Sahetchian, R. Rigny, and S. Circan, Identification of the hydroperoxide formed by isomerization reactions during the oxidation of n-heptane in a reactor and CFR engine, Combust Flame, vol.85, pp.511-515, 1991.

N. Blin-simiand, R. Rigny, V. Viossat, S. Circan, and K. Sahetchian, Autoignition of Hydrocarbon/Air Mixtures in a CFR Engine: Experimental and Modeling Study, Combust Sci Technol, vol.88, pp.329-377, 1993.

F. Jorand, A. Heiss, O. Perrin, K. Sahetchian, L. Kerhoas et al., Isomeric hexylketohydroperoxides formed by reactions of hexoxy and hexylperoxy radicals in oxygen, Int J Chem Kinet, vol.35, pp.354-66, 2003.

N. Blin-simiand, F. Jorand, K. Sahetchian, M. Brun, L. Kerhoas et al., Hydroperoxides with zero, one, two or more carbonyl groups formed during the oxidation of ndodecane, Combust Flame, vol.126, pp.1524-1556, 2001.

C. A. Taatjes, N. Hansen, A. Mcilroy, J. A. Miller, J. P. Senosiain et al., Enols Are Common Intermediates in Hydrocarbon Oxidation, Science, vol.308, pp.1887-1896, 2005.
DOI : 10.1126/science.1112532

F. Qi, Combustion chemistry probed by synchrotron VUV photoionization mass spectrometry, Proc Combust Inst, vol.34, pp.33-63, 2013.
DOI : 10.1016/j.proci.2012.09.002

O. Herbinet and F. Battin-leclerc, Progress in Understanding Low-Temperature Organic Compound Oxidation Using a Jet-Stirred Reactor, Int J Chem Kinet, vol.46, pp.619-658, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01059915

F. Battin-leclerc, O. Herbinet, P. Glaude, R. Fournet, Z. Zhou et al., New experimental evidences about the formation and consumption of ketohydroperoxides, Proc Combust Inst, vol.33, pp.325-356, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00554812

M. Ja, M. J. Frisch, J. W. Ochterski, and G. A. Petersson, A complete basis set model chemistry. VI. Use of density functional geometries and frequencies, J Chem Phys, vol.110, pp.2822-2829, 1999.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., , vol.05

I. Gaussian, , 2004.

K. Moshammer, A. W. Jasper, D. M. Popolan-vaida, A. Lucassen, P. Diévart et al., Detection and Identification of the Keto-Hydroperoxide (HOOCH2OCHO) and Other Intermediates during Low-Temperature Oxidation of Dimethyl Ether, J Phys Chem A, vol.119, pp.7361-74, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02014646

A. J. Eskola, O. Welz, J. Zádor, I. O. Antonov, L. Sheps et al., Probing the lowtemperature chain-branching mechanism of n-butane autoignition chemistry via time-resolved measurements of ketohydroperoxide formation in photolytically initiated n-C4H10 oxidation, Proc Combust Inst, vol.35, pp.291-299, 2015.

O. Herbinet and G. Dayma, Jet-Stirred Reactors, Cleaner Combustion: Developing Detailed Chemical Kinetic Models, pp.183-210, 2013.
DOI : 10.1007/978-1-4471-5307-8_8

URL : https://hal.archives-ouvertes.fr/hal-00880195

F. Monge, V. Aranda, A. Millera, R. Bilbao, and M. U. Alzueta, Tubular Flow Reactors, Cleaner Combustion: Developing Detailed Chemical Kinetic Models, pp.211-241, 2013.
DOI : 10.1007/978-1-4471-5307-8_9

K. Brezinsky, The high-temperature oxidation of aromatic hydrocarbons, Prog Energy Combust Sci, vol.12, pp.1-24, 1986.

Y. Song, H. Hashemi, J. M. Christensen, C. Zou, B. S. Haynes et al., An Exploratory Flow Reactor Study of H2S Oxidation at 30-100 Bar, Int J Chem Kinet, vol.49, pp.37-52, 2017.

O. Levenspiel, Chemical Reaction Engineering, 1999.

M. Abian, M. U. Alzueta, and P. Glarborg, Formation of NO from N2/O2 Mixtures in a Flow Reactor: Toward an Accurate Prediction of Thermal NO, Int J Chem Kinet, vol.47, pp.518-550, 2015.

O. Herbinet, B. Husson, L. Gall, H. Battin-leclerc, and F. , Comparison study of the gas-phase oxidation of alkylbenzenes and alkylcyclohexanes, Chem Eng Sci, vol.131, pp.49-62, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01144243

P. Dagaut, M. Reuillon, and M. Cathonnet, Experimental study of the oxidation of n-heptane in a jet stirred reactor from low to high temperature and pressures up to 40 atm, Combust Flame, vol.101, pp.132-172, 1995.

M. De-joannon, A. Cavaliere, T. Faravelli, E. Ranzi, P. Sabia et al., Analysis of process parameters for steady operations in methane mild combustion technology, Proc Combust Inst, vol.30, pp.2605-2617, 2005.

D. Matras and J. Villermaux, Un réacteur continu parfaitement agité par jets gazeux pour l'étude cinétique de réactions chimiques rapides, Chem Eng Sci, vol.28, pp.129-166, 1973.
DOI : 10.1016/0009-2509(73)85093-6

H. J. Curran, S. L. Fischer, and F. L. Dryer, The reaction kinetics of dimethyl ether. II: Lowtemperature oxidation in flow reactors, Int J Chem Kinet, vol.32, pp.741-59, 2000.

B. Chen, Z. Wang, J. Wang, H. Wang, C. Togbé et al., Exploring gasoline oxidation chemistry in jet stirred reactors, Fuel, vol.236, pp.1282-92, 2019.
DOI : 10.1016/j.fuel.2018.09.055

URL : https://hal.archives-ouvertes.fr/hal-02013604

A. Rodriguez, O. Herbinet, Z. Wang, F. Qi, C. Fittschen et al., Measuring hydroperoxide chain-branching agents during n-pentane low-temperature oxidation, Proc Combust Inst, vol.36, pp.333-375, 2017.
DOI : 10.1016/j.proci.2016.05.044

URL : https://hal.archives-ouvertes.fr/hal-01464175

Z. Wang, D. M. Popolan-vaida, B. Chen, K. Moshammer, M. Sy et al., Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds, Proc Nat Acad Sci, vol.114, pp.13102-13109, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02014708

H. Guo, W. Sun, F. M. Haas, T. Farouk, F. L. Dryer et al., Measurements of H2O2 in low temperature dimethyl ether oxidation, Proc Combust Inst, vol.34, pp.573-81, 2013.

F. N. Egolfopoulos, N. Hansen, Y. Ju, K. Kohse-höinghaus, C. K. Law et al., Advances and challenges in laminar flame experiments and implications for combustion chemistry, Prog Energy Combust Sci, vol.43, pp.36-67, 2014.

C. A. Taatjes, N. Hansen, D. L. Osborn, K. Kohse-höinghaus, T. A. Cool et al., Imaging" combustion chemistry via multiplexed synchrotron-photoionization mass spectrometry, Phys Chem Chem Phys, vol.10, pp.20-34, 2008.
DOI : 10.1039/b713460f

N. Hansen, T. A. Cool, and P. R. Westmoreland, Kohse-Höinghaus K. Recent contributions of flamesampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry, Prog Energy Combust Sci, vol.35, pp.168-91, 2009.

J. B. Anderson, Molecular beams from nozzle sources, Wegener PP, Ed. Molecular beams and low density gasdynamics, pp.1-91, 1974.
DOI : 10.1063/1.1761320

A. Kantrowitz and J. Grey, A High Intensity Source for the Molecular Beam. Part I. Theoretical, Rev Sci Instrum, vol.22, pp.328-360, 1951.

R. E. Smalley, L. Wharton, and D. H. Levy, Molecular optical spectroscopy with supersonic beams and jets, Acc Chem Res, vol.10, pp.139-184, 1977.
DOI : 10.1021/ar50112a006

K. Moshammer, A. W. Jasper, D. M. Popolan-vaida, Z. Wang, B. Shankar et al., Quantification of the Keto-Hydroperoxide (HOOCH2OCHO) and Other Elusive Intermediates during Low-Temperature Oxidation of Dimethyl Ether, J Phys Chem A, vol.120, pp.7890-901, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02014671

M. Kamphus, N. N. Liu, B. Atakan, F. Qi, and A. Mcilroy, REMPI temperature measurement in molecular beam sampled low-pressure flames, Proc Combust Inst, vol.29, pp.2627-2660, 2002.
DOI : 10.1016/s1540-7489(02)80320-0

H. Zhao, L. Wu, C. Patrick, Z. Zhang, Y. Rezgui et al., Studies of low temperature oxidation of n-pentane with nitric oxide addition in a jet stirred reactor, Combust Flame, vol.197, pp.78-87, 2018.

H. Zhao, A. G. Dana, Z. Zhang, W. H. Green, and Y. Ju, Experimental and modeling study of the mutual oxidation of N-pentane and nitrogen dioxide at low and high temperatures in a jet stirred reactor, Energy, vol.165, pp.727-765, 2018.

A. Rodriguez, O. Herbinet, X. Meng, C. Fittschen, Z. Wang et al., Hydroperoxide Measurements During Low-Temperature Gas-Phase Oxidation of n-Heptane and n-Decane, J Phys Chem A, vol.121, pp.1861-76, 2017.
DOI : 10.1021/acs.jpca.6b10378

URL : https://hal.archives-ouvertes.fr/hal-01676244

S. R. Leone, M. Ahmed, and K. R. Wilson, Chemical dynamics, molecular energetics, and kinetics at the synchrotron, Phys Chem Chem Phys, vol.12, pp.6564-78, 2010.
DOI : 10.1039/c001707h

URL : https://digital.library.unt.edu/ark:/67531/metadc1012834/m2/1/high_res_d/983157.pdf

Z. Zhou, X. Du, J. Yang, Y. Wang, C. Li et al., The vacuum ultraviolet beamline/endstations at NSRL dedicated to combustion research, J Synchrotron Radiat, vol.23, pp.1035-1080, 2016.
DOI : 10.1107/s1600577516005816

Y. Li and F. Qi, Recent Applications of Synchrotron VUV Photoionization Mass Spectrometry: Insight into Combustion Chemistry, Acc Chem Res, vol.43, pp.68-78, 2010.
DOI : 10.1021/ar900130b

F. Qi, R. Yang, B. Yang, C. Huang, L. Wei et al., Isomeric identification of polycyclic aromatic hydrocarbons formed in combustion with tunable vacuum ultraviolet photoionization, Rev Sci Instrum, vol.77, p.84101, 2006.

P. Oßwald, P. Hemberger, T. Bierkandt, E. Akyildiz, M. Köhler et al., In situ flame chemistry tracing by imaging photoelectron photoion coincidence spectroscopy, Rev Sci Instrum, vol.85, p.25101, 2014.

J. Krüger, G. A. Garcia, D. Felsmann, K. Moshammer, A. Lackner et al., Photoelectron-photoion coincidence spectroscopy for multiplexed detection of intermediate species in a flame, Phys Chem Chem Phys, vol.16, pp.22791-804, 2014.

D. Krüger, P. Oßwald, M. Köhler, P. Hemberger, T. Bierkandt et al., Hydrogen abstraction ratios: A systematic iPEPICO spectroscopic investigation in laminar flames, Combust Flame, vol.191, pp.343-52, 2018.

D. Felsmann, K. Moshammer, J. Krüger, A. Lackner, A. Brockhinke et al., Electron ionization, photoionization and photoelectron/photoion coincidence spectroscopy in massspectrometric investigations of a low-pressure ethylene/oxygen flame, Proc Combust Inst, vol.35, pp.779-86, 2015.

J. Pieper, S. Schmitt, C. Hemken, E. Davies, J. Wullenkord et al., Isomer Identification in Flames with Double-Imaging Photoelectron/Photoion Coincidence Spectroscopy (i2PEPICO) using Measured and Calculated Reference Photoelectron Spectra, Z Phys Chem, vol.232, p.153, 2018.
DOI : 10.1515/zpch-2017-1009

B. A. Adamson, S. A. Skeen, M. Ahmed, and N. Hansen, Detection of Aliphatically Bridged MultiCore Polycyclic Aromatic Hydrocarbons in Sooting Flames with Atmospheric-Sampling HighResolution Tandem Mass Spectrometry, J Phys Chem A, vol.122, pp.9338-9387, 2018.

T. A. Cool, K. Nakajima, C. A. Taatjes, A. Mcilroy, P. R. Westmoreland et al., Studies of a fuel-rich propane flame with photoionization mass spectrometry, Proc Combust Inst, vol.30, pp.1681-1689, 2005.

P. Osswald, U. Struckmeier, T. Kasper, K. Kohse-höinghaus, J. Wang et al., IsomerSpecific Fuel Destruction Pathways in Rich Flames of Methyl Acetate and Ethyl Formate and Consequences for the Combustion Chemistry of Esters, J Phys Chem A, vol.111, pp.4093-101, 2007.

T. Tao, W. Sun, N. Hansen, A. W. Jasper, K. Moshammer et al., Exploring the negative temperature coefficient behavior of acetaldehyde based on detailed intermediate measurements in a jet-stirred reactor, Combust Flame, vol.192, pp.120-129, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02015807

L. G. Dodson, L. Shen, J. D. Savee, N. C. Eddingsaas, O. Welz et al., VUV Photoionization Cross Sections of HO2, H2O2, and H2CO, J Phys Chem A, vol.119, pp.1279-91, 2015.

M. Bobeldijk, W. J. Van-der-zande, and P. G. Kistemaker, Simple models for the calculation of photoionization and electron impact ionization cross sections of polyatomic molecules, Chem Phys, vol.179, pp.125-155, 1994.

F. A. Gianturco, R. R. Lucchese, and N. Sanna, Calculation of low-energy elastic cross sections for electron-CF4 scattering, J Chem Phys, vol.100, pp.6464-71, 1994.

B. Gans, S. Boyé-péronne, M. Broquier, M. Delsaut, S. Douin et al., Photolysis of methane revisited at 121.6 nm and at 118.2 nm: quantum yields of the primary products, measured by mass spectrometry, Phys Chem Chem Phys, vol.13, pp.8140-52, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00915190

U. Jacovella, D. Holland, S. Boyé-péronne, B. Gans, N. De-oliveira et al., A NearThreshold Shape Resonance in the Valence-Shell Photoabsorption of Linear Alkynes, J Phys Chem A, vol.119, pp.12339-12387, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02072240

U. Jacovella, D. Holland, S. Boyé-péronne, B. Gans, N. De-oliveira et al., Highresolution vacuum-ultraviolet photoabsorption spectra of 1-butyne and 2-butyne, J Chem Phys, vol.143, p.34304, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02072245

A. Natalense and R. R. Lucchese, Cross section and asymmetry parameter calculation for sulfur 1s photoionization of SF6, J Chem Phys, vol.111, pp.5344-5352, 1999.

C. M. Oana and A. I. Krylov, Dyson orbitals for ionization from the ground and electronically excited states within equation-of-motion coupled-cluster formalism: Theory, implementation, and examples, J Chem Phys, vol.127, p.234106, 2007.

I. Wilhelmy, L. Ackermann, A. Görling, and N. Rösch, Molecular photoionization cross sections by the Lobatto technique. I. Valence photoionization, J Chem Phys, vol.100, pp.2808-2828, 1994.

M. Ruberti, R. Yun, K. Gokhberg, S. Kopelke, L. S. Cederbaum et al., Total molecular photoionization cross-sections by algebraic diagrammatic construction-StieltjesLanczos method: Benchmark calculations, J Chem Phys, vol.139, p.144107, 2013.
DOI : 10.1063/1.4824431

K. Gokhberg, V. Vysotskiy, L. S. Cederbaum, L. Storchi, F. Tarantelli et al., Molecular photoionization cross sections by Stieltjes-Chebyshev moment theory applied to Lanczos pseudospectra, J Chem Phys, vol.130, p.64104, 2009.
DOI : 10.1063/1.3073821

K. K. Lehmann, G. Berden, and R. Engeln, Cavity ring-down spectroscopy: Techniques and application, pp.1-26, 2009.

P. Macko, D. Romanini, S. N. Mikhailenko, O. V. Naumenko, S. Kassi et al., High sensitivity CW-cavity ring down spectroscopy of water in the region of the 1.5?m atmospheric window, J Mol Spectrosc, vol.227, pp.90-108, 2004.

A. Campargue, A. Barbe, D. Backer-barilly, M. R. Tyuterev, V. G. Kassi et al., The near infrared spectrum of ozone by CW-cavity ring down spectroscopy between 5850 and 7000 cm?1: new observations and exhaustive review, Phys Chem Chem Phys, vol.10, pp.2925-2971, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01103513

C. Jain, P. Morajkar, C. Schoemaecker, B. Viskolcz, and C. Fittschen, Measurement of Absolute Absorption Cross Sections for Nitrous Acid (HONO) in the Near-Infrared Region by the Continuous Wave Cavity Ring-Down Spectroscopy (cw-CRDS) Technique Coupled to Laser Photolysis, J Phys Chem A, vol.115, pp.10720-10728, 2011.

E. Assaf and C. Fittschen, Cross Section of OH Radical Overtone Transition near 7028 cm-1 and Measurement of the Rate Constant of the Reaction of OH with HO2 Radicals, J Phys Chem A, vol.120, pp.7051-7060, 2016.

X. Mercier and P. Desgroux, Cavity ring-down spectroscopy for combustion studies, Cavity ring-down spectroscopy: Techniques and application, pp.273-311, 2009.

S. Cheskis and A. Goldman, Laser diagnostics of trace species in low-pressure flat flame, Prog Energy Combust Sci, vol.35, pp.365-82, 2009.

G. Meijer, M. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke, Coherent cavity ring down spectroscopy, Chem Phys Lett, vol.217, pp.112-118, 1994.
DOI : 10.1016/0009-2614(93)e1361-j

URL : https://repository.ubn.ru.nl/bitstream/2066/99017/1/99017.pdf

Y. Bouvier, C. Mihesan, M. Ziskind, E. Therssen, C. Focsa et al., Molecular species adsorbed on soot particles issued from low sooting methane and acetylene laminar flames: A laserbased experiment, Proc Combust Inst, vol.31, pp.841-850, 2007.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, CW cavity ring down spectroscopy, Chem Phys Lett, vol.264, pp.316-338, 1997.
DOI : 10.1016/s0009-2614(96)01351-6

URL : https://hal.archives-ouvertes.fr/hal-01097521

X. Mercier, E. Therssen, J. F. Pauwels, and P. Desgroux, Quantitative features and sensitivity of cavity ring-down measurements of species concentrations in flames, Combust Flame, vol.124, pp.656-67, 2001.

C. Bahrini, O. Herbinet, P. Glaude, C. Schoemaecker, C. Fittschen et al., Detection of some stable species during the oxidation of methane by coupling a jet-stirred reactor (JSR) to cw-CRDS, Chem Phys Lett, vol.534, pp.1-7, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00726381

M. Djehiche, L. Tan, N. L. Jain, C. D. Dayma, G. Dagaut et al., Quantitative Measurements of HO2 and Other Products of n-Butane Oxidation (H2O2, H2O, CH2O, and C2H4) at Elevated Temperatures by Direct Coupling of a Jet-Stirred Reactor with Sampling Nozzle and Cavity Ring-Down Spectroscopy (cw-CRDS), J Am Chem Soc, vol.136, pp.16689-94, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01858509

R. Albert, A. Heitmann, U. Heinecke, E. Fittschen, and C. , The Rotationally-Resolved Absorption Spectrum of Formaldehyde from 6547 to 7051 cm?1, Z Phys Chem, vol.229, p.1609, 2015.

A. E. Parker, C. Jain, C. Schoemaecker, P. Szriftgiser, O. Votava et al., Simultaneous, timeresolved measurements of OH and HO2 radicals by coupling of high repetition rate LIF and cw-CRDS techniques to a laser photolysis reactor and its application to the photolysis of H2O2, Appl Phys B, vol.103, pp.725-758, 2011.

C. Bahrini, O. Herbinet, P. Glaude, C. Schoemaecker, C. Fittschen et al., Quantification of Hydrogen Peroxide during the Low-Temperature Oxidation of Alkanes, J Am Chem Soc, vol.134, pp.11944-11951, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00726379

C. Bahrini, P. Morajkar, C. Schoemaecker, O. Frottier, O. Herbinet et al., Experimental and modeling study of the oxidation of n-butane in a jet stirred reactor using cwCRDS measurements, Phys Chem Chem Phys, vol.15, pp.19686-98, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00880155

L. Tan, N. L. Djehiche, M. Jain, C. D. Dagaut, P. Dayma et al., Quantification of HO2 and other products of dimethyl ether oxidation (H2O2, H2O, and CH2O) in a jet-stirred reactor at elevated temperatures by low-pressure sampling and continuous-wave cavity ring-down spectroscopy, Fuel, vol.158, pp.248-52, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02014636

J. F. Griffiths, K. J. Hughes, and R. Porter, The role and rate of hydrogen peroxide decomposition during hydrocarbon two-stage autoignition, Proc Combust Inst, vol.30, pp.1083-91, 2005.

M. Carlier, C. Corre, R. Minetti, J. F. Pauwels, M. Ribaucour et al., Autoignition of butane: A burner and a rapid compression machine study, Proc Combust Inst, vol.23, pp.1753-1761, 1991.

Y. Ju, C. B. Reuter, O. R. Yehia, T. I. Farouk, and S. H. Won, Cool flames and their impact on engine fuel development, Prog Energy Combust Sci, 2018.

C. Arcoumanis, C. Bae, R. Crookes, and E. Kinoshita, The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review, Fuel, vol.87, pp.1014-1044, 2008.

W. Leitner, J. Klankermayer, S. Pischinger, H. Pitsch, and K. Kohse-höinghaus, Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production, Angew Chem Int Ed, vol.56, pp.5412-52, 2017.
DOI : 10.1002/anie.201607257

H. Liu, Z. Wang, J. Wang, and X. He, Improvement of emission characteristics and thermal efficiency in diesel engines by fueling gasoline/diesel/PODEn blends, Energy, vol.97, pp.105-117, 2016.

K. Kohse-höinghaus, P. Oßwald, T. A. Cool, T. Kasper, N. Hansen et al., Biofuel Combustion Chemistry: From Ethanol to Biodiesel, Angew Chem Int Ed, vol.49, pp.3572-97, 2010.

N. Kurimoto, B. Brumfield, X. Yang, T. Wada, P. Diévart et al., Quantitative measurements of HO2/H2O2 and intermediate species in low and intermediate temperature oxidation of dimethyl ether, Proc Combust Inst, vol.35, pp.457-64, 2015.

O. Herbinet, F. Battin-leclerc, S. Bax, H. L. Gall, P. Glaude et al., Detailed product analysis during the low temperature oxidation of n-butane, Phys Chem Chem Phys, vol.13, p.296308, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00602156

W. Sun, T. Tao, M. Lailliau, N. Hansen, B. Yang et al., Exploration of the oxidation chemistry of dimethoxymethane: Jet-stirred reactor experiments and kinetic modeling, Combust Flame, vol.193, pp.491-501, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02014721

H. Liao, T. Tao, W. Sun, N. Hansen, C. K. Law et al., Investigation of the low-temperature oxidation of n-butanal in a jet-stirred reactor, Proc Combust Inst, 2018.

P. J. Linstrom, W. G. Mallard, . Nist-chemistry, and . Webbook, Number, vol.69

H. Koizumi, Predominant decay channel for superexcited organic molecules, J Chem Phys, vol.95, pp.5846-52, 1991.
DOI : 10.1063/1.461605

URL : https://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/53632/1/JCP_95_5846_1991.pdf

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman et al., Evaluated Kinetic Data for Combustion Modeling. Supplement I, J Phys Chem Ref Data, vol.23, pp.847-855, 1994.
DOI : 10.1063/1.555908

J. Troe, The thermal dissociation/recombination reaction of hydrogen peroxide H2O2(+M)?2OH(+M) III.: Analysis and representation of the temperature and pressure dependence over wide ranges, Combust Flame, vol.158, pp.594-601, 2011.

U. Burke, K. P. Somers, P. O&apos;toole, C. M. Zinner, N. Marquet et al., An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures, Combust Flame, vol.162, pp.315-345, 2015.
DOI : 10.1016/j.combustflame.2014.08.014

URL : https://aran.library.nuigalway.ie/bitstream/10379/6102/1/CNF_paper_CH4_DME.pdf

Z. Wang, X. Zhang, L. Xing, L. Zhang, F. Herrmann et al., Experimental and kinetic modeling study of the low-and intermediate-temperature oxidation of dimethyl ether, Combust Flame, vol.162, pp.1113-1138, 2015.

F. H. Vermeire, H. Carstensen, O. Herbinet, F. Battin-leclerc, G. B. Marin et al., Experimental and modeling study of the pyrolysis and combustion of dimethoxymethane, Combust Flame, vol.190, pp.270-83, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01676234

L. Marrodán, E. Royo, Á. Millera, R. Bilbao, and M. U. Alzueta, High Pressure Oxidation of Dimethoxymethane, Energy Fuels, vol.29, pp.3507-3524, 2015.

T. Varga, C. Olm, T. Nagy, I. G. Zsély, É. Valkó et al., Development of a Joint Hydrogen and Syngas Combustion Mechanism Based on an Optimization Approach, Int J Chem Kinet, vol.48, pp.407-429, 2016.

M. Blocquet, C. Schoemaecker, D. Amedro, O. Herbinet, F. Battin-leclerc et al., Quantification of OH and HO2 radicals during the low-temperature oxidation of hydrocarbons by Fluorescence Assay by Gas Expansion technique, Proc Nat Acad Sci, vol.110, pp.20014-20021, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00923973

B. Brumfield, W. Sun, Y. Ju, and G. Wysocki, Direct In Situ Quantification of HO2 from a Flow Reactor, J Phys Chem Lett, vol.4, pp.872-878, 2013.

X. Zhang, L. Ye, Y. Li, Y. Zhang, C. Cao et al., Acetaldehyde oxidation at low and intermediate temperatures: An experimental and kinetic modeling investigation, Combust Flame, vol.191, pp.431-472, 2018.
DOI : 10.1016/j.combustflame.2018.01.027

X. Zhang, Y. Li, C. Cao, J. Zou, Y. Zhang et al., New insights into propanal oxidation at low temperatures: An experimental and kinetic modeling study, Proc Combust Inst, 2018.
DOI : 10.1016/j.proci.2018.06.173

URL : https://hal.archives-ouvertes.fr/hal-02011292

F. Battin-leclerc, A. Rodriguez, B. Husson, O. Herbinet, P. Glaude et al., Products from the Oxidation of Linear Isomers of Hexene, J Phys Chem A, vol.118, pp.673-83, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01022632

Z. Wang, S. Y. Mohamed, L. Zhang, K. Moshammer, D. M. Popolan-vaida et al., New insights into the low-temperature oxidation of 2-methylhexane, Proc Combust Inst, vol.36, pp.373-82, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02014676

J. Biet, M. H. Hakka, V. Warth, P. Glaude, and F. Battin-leclerc, Experimental and Modeling Study of the Low-Temperature Oxidation of Large Alkanes, Energy Fuels, vol.22, pp.2258-69, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00320099

Z. Wang, O. Herbinet, Z. Cheng, B. Husson, R. Fournet et al., Experimental Investigation of the Low Temperature Oxidation of the Five Isomers of Hexane, J Phys Chem A, vol.118, pp.5573-94, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01056660

O. Herbinet, B. Husson, Z. Serinyel, M. Cord, V. Warth et al., Experimental and modeling investigation of the low-temperature oxidation of n-heptane, Combust Flame, vol.159, pp.3455-71, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00771363

M. Pelucchi, E. Ranzi, A. Frassoldati, and T. Faravelli, Alkyl radicals rule the low temperature oxidation of long chain aldehydes, Proc Combust Inst, vol.36, pp.393-401, 2017.

M. Pelucchi, K. P. Somers, K. Yasunaga, U. Burke, A. Frassoldati et al., An experimental and kinetic modeling study of the pyrolysis and oxidation of n-C3C5 aldehydes in shock tubes, Combust Flame, vol.162, pp.265-86, 2015.

Z. Wang, L. Zhang, K. Moshammer, D. M. Popolan-vaida, V. Shankar et al., Additional chain-branching pathways in the low-temperature oxidation of branched alkanes, Combust Flame, vol.164, pp.386-96, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02014659

I. O. Antonov, J. Zádor, B. Rotavera, E. Papajak, D. L. Osborn et al., PressureDependent Competition among Reaction Pathways from First-and Second-O2 Additions in the LowTemperature Oxidation of Tetrahydrofuran, J Phys Chem A, vol.120, pp.6582-95, 2016.

A. J. Eskola, I. O. Antonov, L. Sheps, J. D. Savee, D. L. Osborn et al., Time-resolved measurements of product formation in the low-temperature (550-675 K) oxidation of neopentane: a probe to investigate chain-branching mechanism, Phys Chem Chem Phys, vol.19, pp.13731-13776, 2017.

W. Sun, M. Lailliau, Z. Serinyel, G. Dayma, K. Moshammer et al., Insights into the oxidation kinetics of a cetane improver -1,2-dimethoxyethane (1,2-DME) with experimental and modeling methods, Proc Combust Inst, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02011306

A. L. Koritzke, J. C. Davis, R. L. Caravan, M. G. Christianson, D. L. Osborn et al., QOOHmediated reactions in cyclohexene oxidation, Proc Combust Inst, 2018.
DOI : 10.1016/j.proci.2018.05.029

J. Wang, B. Yang, T. A. Cool, N. Hansen, and T. Kasper, Near-threshold absolute photoionization cross-sections of some reaction intermediates in combustion, Int J Mass spectrom, vol.269, p.21020, 2008.

F. W. Mclafferty and F. Turecek, Interpretation of mass spectra, University science books, pp.1-371, 1993.

L. Xing, J. L. Bao, Z. Wang, F. Zhang, and D. G. Truhlar, Degradation of Carbonyl Hydroperoxides in the Atmosphere and in Combustion, J Am Chem Soc, vol.139, pp.15821-15856, 2017.

C. K. Westbrook and F. L. Dryer, Chemical kinetic modeling of hydrocarbon combustion, Prog Energy Combust Sci, vol.10, pp.1-57, 1984.
DOI : 10.1016/0360-1285(84)90118-7

C. K. Mclane, Hydrogen Peroxide in the Thermal Hydrogen Oxygen Reaction I. Thermal Decomposition of Hydrogen Peroxide, J Chem Phys, vol.17, pp.379-85, 1949.

R. R. Baldwin and D. Brattan, Homogeneous gas-phase decomposition of hydrogen peroxide, Proc Combust Inst, vol.8, pp.110-119, 1961.
DOI : 10.1016/s0082-0784(06)80492-3

E. Meyer, H. A. Olschewski, J. Troe, and H. G. Wagner, Investigation of N2H4 and H2O2 decomposition in low and high pressure shock waves, Proc Combust Inst, vol.12, pp.345-55, 1969.

C. Kappel, K. Luther, and J. Troe, Shock wave study of the unimolecular dissociation of H2O2 in its falloff range and of its secondary reactions, Phys Chem Chem Phys, vol.4, pp.4392-4400, 2002.

Z. Hong, A. Farooq, E. A. Barbour, D. F. Davidson, and R. K. Hanson, Hydrogen Peroxide Decomposition Rate: A Shock Tube Study Using Tunable Laser Absorption of H2O near 2.5 ?m, J Phys Chem A, vol.113, pp.12919-12944, 2009.

M. B. Sajid, E. Es-sebbar, T. Javed, C. Fittschen, and A. Farooq, Measurement of the Rate of Hydrogen Peroxide Thermal Decomposition in a Shock Tube Using Quantum Cascade Laser Absorption Near 7.7 ?m, Int J Chem Kinet, vol.46, pp.275-84, 2014.

S. R. Sellevåg, Y. Georgievskii, and J. A. Miller, Kinetics of the Gas-Phase Recombination Reaction of Hydroxyl Radicals to Form Hydrogen Peroxide, J Phys Chem A, vol.113, pp.4457-67, 2009.

Z. Hong, R. D. Cook, D. F. Davidson, and R. K. Hanson, A Shock Tube Study of OH + H2O2 ? H2O + HO2 and H2O2 + M ? 2OH + M using Laser Absorption of H2O and OH, J Phys Chem A, vol.114, pp.5718-5745, 2010.

D. L. Baulch, C. T. Bowman, C. J. Cobos, R. A. Cox, T. Just et al., Evaluated Kinetic Data for Combustion Modeling: Supplement II, J Phys Chem Ref Data, vol.34, pp.757-1397, 2005.
DOI : 10.1063/1.1748524

R. R. Baldwin, D. Brattan, B. Tunnicliffe, R. W. Walker, and S. J. Webster, The hydrogen-sensitized decomposition of hydrogen peroxide, Combust Flame, vol.15, pp.133-175, 1970.

A. D. Kirk and J. H. Knox, The pyrolysis of alkyl hydroperoxides in the gas phase, Trans Faraday Soc, vol.56, pp.1296-303, 1960.

K. A. Sahetchian, A. Heiss, R. Rigny, and B. Ri, Determination of the gas-phase decomposition rate constants of heptyl-1 and heptyl-2 hydroperoxides (C7H15OOH), Int J Chem Kinet, vol.14, pp.1325-1362, 1982.

I. A. Vardanyan, G. A. Sachyan, and A. B. Nalbandyan, Kinetics and mechanism of formaldehyde oxidation, Combust Flame, vol.17, pp.315-337, 1971.
DOI : 10.1016/s0010-2180(71)80053-6

C. F. Goldsmith, G. R. Magoon, and W. H. Green, Database of Small Molecule Thermochemistry for Combustion, J Phys Chem A, vol.116, pp.9033-57, 2012.
DOI : 10.1021/jp303819e

S. M. Burke, J. M. Simmie, and H. J. Curran, Critical Evaluation of Thermochemical Properties of C1-C4 Species: Updated Group-Contributions to Estimate Thermochemical Properties, J Phys Chem Ref Data, vol.44, p.13101, 2015.

K. Zhang, C. Banyon, C. Togbé, P. Dagaut, J. Bugler et al., An experimental and kinetic modeling study of n-hexane oxidation, Combust Flame, vol.162, pp.4194-207, 2015.
DOI : 10.1016/j.combustflame.2015.08.001

URL : https://hal.archives-ouvertes.fr/hal-02017135

M. Pelucchi, M. Bissoli, C. Cavallotti, A. Cuoci, T. Faravelli et al., Improved Kinetic Model of the Low-Temperature Oxidation of n-Heptane, Energy Fuels, vol.28, pp.7178-93, 2014.

H. Niki, P. D. Maker, C. M. Savage, and L. P. Breitenbach, A Fourier transform infrared study of the kinetics and mechanism for the reaction hydroxyl + methyl hydroperoxide, J Phys Chem, vol.87, pp.2190-2193, 1983.

C. Wang and Z. Chen, Effect of CH3OOH on the atmospheric concentration of OH radicals, Prog Natur Sci, vol.16, pp.1141-1150, 2006.

J. Luo, X. Jia, Y. Gao, G. Song, Y. Yu et al., Theoretical study on the kinetics of OH radical reactions with CH3OOH and CH3CH2OOH, J Comput Chem, vol.32, pp.987-97, 2011.

C. Wang and Z. Chen, An experimental study for rate constants of the gas phase reactions of CH3CH2OOH with OH radicals, O3, NO2 and NO, Atmos Environ, vol.42, pp.6614-6623, 2008.

M. Baasandorj, D. K. Papanastasiou, R. K. Talukdar, A. S. Hasson, and J. B. Burkholder, CH3)3COOH (tert-butyl hydroperoxide): OH reaction rate coefficients between 206 and 375 K and the OH photolysis quantum yield at 248 nm, Phys Chem Chem Phys, vol.12, pp.12101-12112, 2010.
DOI : 10.1039/c0cp00463d

H. M. Allen, J. D. Crounse, K. H. Bates, A. P. Teng, M. P. Krawiec-thayer et al., Kinetics and Product Yields of the OH Initiated Oxidation of Hydroxymethyl Hydroperoxide, J Phys Chem A, vol.122, pp.6292-302, 2018.

. St, J. M. Clair, J. C. Rivera-rios, J. D. Crounse, H. C. Knap et al., Kinetics and Products of the Reaction of the First-Generation Isoprene Hydroxy Hydroperoxide (ISOPOOH) with OH, J Phys Chem A, vol.120, pp.1441-51, 2016.

C. F. Goldsmith, W. H. Green, and S. J. Klippenstein, Role of O2 + QOOH in Low-Temperature Ignition of Propane. 1. Temperature and Pressure Dependent Rate Coefficients, J Phys Chem A, vol.116, pp.3325-3371, 2012.

C. F. Goldsmith, M. P. Burke, Y. Georgievskii, and S. J. Klippenstein, Effect of non-thermal product energy distributions on ketohydroperoxide decomposition kinetics, Proc Combust Inst, vol.35, pp.283-90, 2015.
DOI : 10.1016/j.proci.2014.05.006

A. Rauk, R. J. Boyd, S. L. Boyd, D. J. Henry, and L. Radom, Alkoxy radicals in the gaseous phase: ?scission reactions and formation by radical addition to carbonyl compounds, Can J Chem, vol.81, pp.431-473, 2003.
DOI : 10.1139/v02-206

URL : https://researchrepository.murdoch.edu.au/id/eprint/4972/1/alkoxy_radicals_in_the_gaseous_phase.pdf

I. Liu, N. W. Cant, J. H. Bromly, F. J. Barnes, P. F. Nelson et al., Formate species in the lowtemperature oxidation of dimethyl ether, Chemosphere, vol.42, pp.583-592, 2001.

F. Herrmann, P. Oßwald, and K. Kohse-höinghaus, Mass spectrometric investigation of the lowtemperature dimethyl ether oxidation in an atmospheric pressure laminar flow reactor, Proc Combust Inst, vol.34, pp.771-779, 2013.

J. Gao and Y. Nakamura, Low-temperature ignition of dimethyl ether: transition from cool flame to hot flame promoted by decomposition of HPMF (HO2CH2OCHO), Combust Flame, vol.165, pp.68-82, 2016.

A. Andersen and E. A. Carter, First-principles-derived kinetics of the reactions involved in lowtemperature dimethyl ether oxidation, Mol Phys, vol.106, pp.367-96, 2008.

Z. Serinyel, M. Lailliau, S. Thion, G. Dayma, and P. Dagaut, An experimental chemical kinetic study of the oxidation of diethyl ether in a jet-stirred reactor and comprehensive modeling, Combust Flame, vol.193, pp.453-62, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02014719

L. Tran, O. Herbinet, Y. Li, J. Wullenkord, M. Zeng et al., Low-temperature gasphase oxidation of diethyl ether: Fuel reactivity and fuel-specific products, Proc Combust Inst, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01922883

Y. Sakai, J. Herzler, M. Werler, C. Schulz, and M. Fikri, A quantum chemical and kinetics modeling study on the autoignition mechanism of diethyl ether, Proc Combust Inst, vol.36, pp.195-202, 2017.

S. Thion, C. Togbé, Z. Serinyel, G. Dayma, and P. Dagaut, A chemical kinetic study of the oxidation of dibutyl-ether in a jet-stirred reactor, Combust Flame, vol.185, pp.4-15, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02014703

A. Chebbi and P. Carlier, Carboxylic acids in the troposphere, occurrence, sources, and sinks: A review, Atmos Environ, vol.30, pp.4233-4282, 1996.

F. Battin-leclerc, A. A. Konnov, J. L. Jaffrezo, and M. Legrand, To Better Understand the Formation of Short-Chain Acids in Combustion Systems, Combust Sci Technol, vol.180, pp.343-70, 2007.
URL : https://hal.archives-ouvertes.fr/insu-00377936

E. Zervas, X. Montagne, and J. Lahaye, Collection and analysis of organic acids in exhaust gas. Comparison of different methods, Atmos Environ, vol.33, pp.4953-62, 1999.

R. K. Jensen, S. Korcek, L. R. Mahoney, and M. Zinbo, Liquid-phase autoxidation of organic compounds at elevated temperatures. 2. Kinetics and mechanisms of the formation of cleavage products in n-hexadecane autoxidation, J Am Chem Soc, vol.103, pp.1742-1751, 1981.

S. Wang, D. L. Miller, N. P. Cernansky, H. J. Curran, W. J. Pitz et al., A flow reactor study of neopentane oxidation at 8 atmospheres: experiments and modeling, Combust Flame, vol.118, pp.415-445, 1999.

E. Ranzi, C. Cavallotti, A. Cuoci, A. Frassoldati, M. Pelucchi et al., New reaction classes in the kinetic modeling of low temperature oxidation of n-alkanes, Combust Flame, vol.162, pp.1679-91, 2015.

A. Jalan, I. M. Alecu, R. Meana-pañeda, J. Aguilera-iparraguirre, K. R. Yang et al., New Pathways for Formation of Acids and Carbonyl Products in Low-Temperature Oxidation: The Korcek Decomposition of ?-Ketohydroperoxides, J Am Chem Soc, vol.135, pp.11100-11114, 2013.

L. Crâne, J. Rayez, M. Rayez, J. Villenave, and E. , A reinvestigation of the kinetics and the mechanism of the CH3C(O)O2 + HO2 reaction using both experimental and theoretical approaches, Phys Chem Chem Phys, vol.8, pp.2163-71, 2006.

A. M. Zaras, M. Sz?ri, S. Thion, P. Van-cauwenberghe, F. Deguillaume et al., A Chemical Kinetic Investigation on Butyl Formate Oxidation: Ab Initio Calculations and Experiments in a JetStirred Reactor, Energy Fuels, vol.31, pp.6194-205, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02014697

G. Dayma, S. Thion, M. Lailliau, Z. Serinyel, P. Dagaut et al., Kinetics of propyl acetate oxidation: Experiments in a jet-stirred reactor, ab initio calculations, and rate constant determination, Proc Combust Inst, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02011311

W. K. Metcalfe, C. Togbé, P. Dagaut, H. J. Curran, and J. M. Simmie, A jet-stirred reactor and kinetic modeling study of ethyl propanoate oxidation, Combust Flame, vol.156, pp.250-60, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02020299

G. Dayma, F. Halter, F. Foucher, C. Togbé, C. Mounaim-rousselle et al., Experimental and Detailed Kinetic Modeling Study of Ethyl Pentanoate (Ethyl Valerate) Oxidation in a Jet Stirred Reactor and Laminar Burning Velocities in a Spherical Combustion Chamber, Energy Fuels, vol.26, pp.4735-4783, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02014762

C. A. Grambow, A. Jamal, Y. Li, W. H. Green, J. Zádor et al., Unimolecular Reaction Pathways of a ?-Ketohydroperoxide from Combined Application of Automated Reaction Discovery Methods, J Am Chem Soc, vol.140, pp.1035-1083, 2018.

W. K. Metcalfe, S. Dooley, H. J. Curran, J. M. Simmie, A. M. El-nahas et al., Experimental and Modeling Study of C5H10O2 Ethyl and Methyl Esters, J Phys Chem A, vol.111, pp.4001-4015, 2007.

M. R. Barusch, H. W. Crandall, J. Q. Payne, and J. R. Thomas, Identification of ?-Dicarbonyl Compounds, Ind Eng Chem, vol.43, pp.2764-2770, 1951.

G. Vanhove, Y. Yu, M. A. Boumehdi, O. Frottier, O. Herbinet et al., Experimental Study of Tetrahydrofuran Oxidation and Ignition in Low-Temperature Conditions, Energy Fuels, vol.29, pp.6118-6143, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01266247

R. H. West and C. F. Goldsmith, The impact of roaming radicals on the combustion properties of transportation fuels, Combust Flame, vol.194, pp.387-95, 2018.

H. Sun and J. W. Bozzelli, Thermochemical and Kinetic Analysis on the Reactions of Neopentyl and Hydroperoxy-Neopentyl Radicals with Oxygen: Part I. OH and Initial Stable HC Product Formation, J Phys Chem A, vol.108, pp.1694-711, 2004.

Q. Yao, X. Sun, Z. Li, F. Chen, and X. Li, Pressure-Dependent Rate Rules for Intramolecular H-Migration Reactions of Hydroperoxyalkylperoxy Radicals in Low Temperature, J Phys Chem A, vol.121, pp.3001-3019, 2017.

S. Y. Mohamed, A. C. Davis, A. Rashidi, M. J. Sarathy, and S. M. , High-Pressure Limit Rate Rules for ?-H Isomerization of Hydroperoxyalkylperoxy Radicals, J Phys Chem A, vol.122, pp.3626-3665, 2018.
DOI : 10.1021/acs.jpca.7b11955

S. Y. Mohamed, A. C. Davis, A. Rashidi, M. J. Sarathy, and S. M. , Computational Kinetics of Hydroperoxybutylperoxy Isomerizations and Decompositions: A Study of the Effect of Hydrogen Bonding, J Phys Chem A, vol.122, pp.6277-91, 2018.

L. Xing, J. L. Bao, Z. Wang, X. Wang, and D. G. Truhlar, Hydrogen shift isomerizations in the kinetics of the second oxidation mechanism of alkane combustion. Reactions of the hydroperoxypentylperoxy OOQOOH radical, Combust Flame, vol.197, pp.88-101, 2018.

L. Xing, J. L. Bao, Z. Wang, X. Wang, and D. G. Truhlar, Relative rates of hydrogen shift isomerizations depend strongly on multiple-structure anharmonicity, J Am Chem Soc, 2018.
DOI : 10.1021/jacs.8b09381

E. J. Silke, W. J. Pitz, C. K. Westbrook, and M. Ribaucour, Detailed Chemical Kinetic Modeling of Cyclohexane Oxidation, J Phys Chem A, vol.111, pp.3761-75, 2007.
DOI : 10.1021/jp067592d

URL : https://digital.library.unt.edu/ark:/67531/metadc901778/m2/1/high_res_d/936972.pdf

Z. Wang and S. M. Sarathy, Third O2 addition reactions promote the low-temperature autoignition of n-alkanes, Combust Flame, vol.165, pp.364-72, 2016.

E. Tingas, Z. Wang, M. Sarathy, S. Im, H. G. Goussis et al., Chemical kinetic insights into the ignition dynamics of n-hexane, Combust Flame, vol.188, pp.28-40, 2018.

E. A. Tingas, D. C. Kyritsis, and D. A. Goussis, Ignition delay control of DME/air and EtOH/air homogeneous autoignition with the use of various additives, Fuel, vol.169, pp.15-24, 2016.

Y. Pei, E. R. Hawkes, S. Kook, G. M. Goldin, and T. Lu, Modelling n-dodecane spray and combustion with the transported probability density function method, Combust Flame, vol.162, pp.2006-2025, 2015.
DOI : 10.1016/j.combustflame.2014.12.019

URL : https://manuscript.elsevier.com/S0010218015000024/pdf/S0010218015000024.pdf

W. Yuan, Y. Li, and F. Qi, Challenges and perspectives of combustion chemistry research, Sci China Chem, vol.60, pp.1391-401, 2017.
DOI : 10.1007/s11426-017-9066-9

J. Chai and C. F. Goldsmith, Rate coefficients for fuel+NO2: Predictive kinetics for HONO and HNO2 formation, Proc Combust Inst, vol.36, pp.617-643, 2017.
DOI : 10.1016/j.proci.2016.06.133

A. Dufour, J. Weng, L. Jia, X. Tang, B. Sirjean et al., Revealing the chemistry of biomass pyrolysis by means of tunable synchrotron photoionisation-mass spectrometry, RSC Adv, vol.3, pp.4786-92, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00799210

L. Jia, L. Brech, Y. Mauviel, G. Qi, F. Bente-von-frowein et al., Online Analysis of Biomass Pyrolysis Tar by Photoionization Mass Spectrometry, Energy Fuels, vol.30, pp.1555-63, 2016.
DOI : 10.1021/acs.energyfuels.5b02274

URL : https://hal.archives-ouvertes.fr/hal-01923759

L. Jia, Z. Zhou, Y. Li, J. Yang, and F. Qi, Novel applications of synchrotron VUV photoionization mass spectrometry in combustion and energy research, Sci China Chem, vol.43, pp.1686-99, 2013.

T. Baer and R. P. Tuckett, Advances in threshold photoelectron spectroscopy (TPES) and threshold photoelectron photoion coincidence (TPEPICO), Phys Chem Chem Phys, vol.19, pp.9698-723, 2017.
DOI : 10.1039/c7cp00144d

URL : https://research.birmingham.ac.uk/portal/files/40145399/TPEPICOreviewPURE_310317.pdf

G. A. Garcia, H. Soldi-lose, and L. Nahon, A versatile electron-ion coincidence spectrometer for photoelectron momentum imaging and threshold spectroscopy on mass selected ions using synchrotron radiation, Rev Sci Instrum, vol.80, p.23102, 2009.
DOI : 10.1063/1.3079331

X. Tang, G. A. Garcia, J. Gil, and L. Nahon, Vacuum upgrade and enhanced performances of the double imaging electron/ion coincidence end-station at the vacuum ultraviolet beamline DESIRS, Rev Sci Instrum, vol.86, p.123108, 2015.

B. Sztáray, K. Voronova, K. G. Torma, K. J. Covert, A. Bodi et al., CRF-PEPICO: Double velocity map imaging photoelectron photoion coincidence spectroscopy for reaction kinetics studies, J Chem Phys, vol.147, p.13944, 2017.

P. Hemberger, V. Custodis, A. Bodi, T. Gerber, and J. A. Van-bokhoven, Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis, Nat commun, vol.8, p.15946, 2017.

T. Berndt, S. Richters, T. Jokinen, N. Hyttinen, T. Kurtén et al., Hydroxyl radicalinduced formation of highly oxidized organic compounds, Nat commun, vol.7, p.13677, 2016.
DOI : 10.1038/ncomms13677

URL : https://www.nature.com/articles/ncomms13677.pdf

F. Mclafferty, Tandem mass spectrometry, Science, vol.214, pp.280-287, 1981.

F. W. Mclafferty, Tandem mass spectrometry (MS/MS): a promising new analytical technique for specific component determination in complex mixtures, Acc Chem Res, vol.13, p.339, 1980.

K. Levsen and H. Schwarz, Collisional Activation Mass Spectrometry-A New Probe for Determining the Structure of Ions in the Gas Phase, Angew Chem Int Edit, vol.15, pp.509-528, 1976.

K. Levsen and H. Schwarz, Gas-phase chemistry of collisionally activated ions, Mass spectrom Rev, vol.2, pp.77-148, 1983.
DOI : 10.1002/mas.1280020104

C. Puzzarini, Rotational spectroscopy meets theory, Phys Chem Chem Phys, vol.15, p.6595607, 2013.
DOI : 10.1039/c3cp44301a

G. B. Park and R. W. Field, Perspective: The first ten years of broadband chirped pulse Fourier transform microwave spectroscopy, J Chem Phys, vol.144, 2016.

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, and B. H. Pate, The rotational spectrum of epifluorohydrin measured by chirped-pulse Fourier transform microwave spectroscopy, J Mol Spectrosc, vol.238, pp.200-212, 2006.

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman et al., A broadband Fourier transform microwave spectrometer based on chirped pulse excitation, Rev Sci Instrum, vol.79, p.53103, 2008.
DOI : 10.1063/1.2919120

Y. Xu, J. V. Wijngaarden, and W. Jäger, Microwave spectroscopy of ternary and quaternary van der Waals clusters, Int Rev Phys Chem, vol.24, pp.301-339, 2005.

N. Hansen, J. Wullenkord, D. A. Obenchain, I. Graf, K. Kohse-höinghaus et al., Microwave spectroscopic detection of flame-sampled combustion intermediates, RSC Adv, vol.7, pp.37867-72, 2017.
DOI : 10.1039/c7ra06483g

URL : https://pubs.rsc.org/en/content/articlepdf/2017/ra/c7ra06483g

A. Cuoci, A. E. Saufi, A. Frassoldati, D. L. Dietrich, F. A. Williams et al., Flame extinction and low-temperature combustion of isolated fuel droplets of n-alkanes, Proc Combust Inst, vol.36, pp.2531-2540, 2017.

U. Molteni, F. Bianchi, F. Klein, E. Haddad, I. Frege et al., Formation of highly oxygenated organic molecules from aromatic compounds, Atmos Chem Phys, vol.18, pp.1909-1930, 2018.
DOI : 10.5194/acp-18-1909-2018

URL : https://www.atmos-chem-phys.net/18/1909/2018/acp-18-1909-2018.pdf

D. R. Gentner, S. H. Jathar, T. D. Gordon, R. Bahreini, D. A. Day et al., Review of Urban Secondary Organic Aerosol Formation from Gasoline and Diesel Motor Vehicle Emissions, Environ Sci Technol, vol.51, pp.1074-93, 2017.
DOI : 10.1021/acs.est.6b04509

A. C. Davis and J. S. Francisco, Reactivity Trends within Alkoxy Radical Reactions Responsible for Chain Branching, J Am Chem Soc, vol.133, pp.18208-18227, 2011.
DOI : 10.1021/ja204806b

T. Jokinen, M. Sipilä, S. Richters, V. Kerminen, P. Paasonen et al., Rapid Autoxidation Forms Highly Oxidized RO2 Radicals in the Atmosphere, Angew Chem Int Ed, vol.53, pp.14596-600, 2014.
DOI : 10.1002/anie.201408566

E. Praske, R. V. Otkjaer, J. D. Crounse, J. C. Hethcox, B. M. Stoltz et al., Atmospheric autoxidation is increasingly important in urban and suburban North America, Proc Nat Acad Sci, vol.115, pp.64-73, 2018.
DOI : 10.1073/pnas.1715540115

URL : https://www.pnas.org/content/pnas/115/1/64.full.pdf

M. Shrivastava, C. D. Cappa, J. Fan, A. H. Goldstein, A. B. Guenther et al., Recent advances in understanding secondary organic aerosol: Implications for global climate forcing, Rev Geophys, vol.55, pp.509-59, 2017.
DOI : 10.1002/2016rg000540

URL : https://authors.library.caltech.edu/79533/1/Shrivastava_et_al-2017-Reviews_of_Geophysics.pdf

C. E. Stockwell, P. R. Veres, J. Williams, and R. J. Yokelson, Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution protontransfer-reaction time-of-flight mass spectrometry, Atmos Chem Phys, vol.15, pp.845-65, 2015.

R. J. Yokelson, I. R. Burling, J. B. Gilman, C. Warneke, C. E. Stockwell et al., Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires, Atmos Chem Phys, vol.13, pp.89-116, 2013.

D. V. Spracklen, J. L. Jimenez, K. S. Carslaw, D. R. Worsnop, M. J. Evans et al., Aerosol mass spectrometer constraint on the global secondary organic aerosol budget, Atmos Chem Phys, vol.11, pp.12109-12145, 2011.

K. Tsigaridis, N. Daskalakis, M. Kanakidou, P. J. Adams, P. Artaxo et al., The AeroCom evaluation and intercomparison of organic aerosol in global models, Atmos Chem Phys, vol.14, pp.10845-95, 2014.

M. Shrivastava, R. C. Easter, X. Liu, A. Zelenyuk, B. Singh et al., Global transformation and fate of SOA: Implications of low-volatility SOA and gas-phase fragmentation reactions, J Geophys Res, vol.120, pp.4169-95, 2015.

S. M. Saunders, M. E. Jenkin, R. G. Derwent, and M. J. Pilling, Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, Atmos Chem Phys, vol.3, pp.161-80, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00300962

L. Vereecken, B. Aumont, I. Barnes, J. W. Bozzelli, M. J. Goldman et al., Perspective on Mechanism Development and Structure-Activity Relationships for Gas-Phase Atmospheric Chemistry, Int J Chem Kinet, vol.50, pp.435-69, 2018.
DOI : 10.1002/kin.21172

URL : http://eprints.whiterose.ac.uk/130646/1/IJCK_perspective_AAM.pdf