, Consortium International Human Genome Sequencing. Finishing the euchromatic sequence of the human genome, Nature, vol.431, pp.931-945, 2004.

M. D. Adams, S. E. Celniker, R. A. Holt, C. A. Evans, J. D. Gocayne et al., The genome sequence of Drosophila melanogaster, Science, vol.287, pp.2185-2195, 2000.

E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody et al., Initial sequencing and analysis of the human genome, Nature, vol.409, pp.860-921, 2001.

R. Cordaux and M. A. Batzer, The impact of retrotransposons on human genome evolution, Nat. Rev. Genet, vol.10, pp.691-703, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00419189

M. Ludwig, Functional evolution of noncoding DNA, Curr. Opin. Genet. Dev, vol.12, pp.634-639, 2002.

T. Wicker, F. Sabot, A. Hua-van, J. L. Bennetzen, P. Capy et al., A unified classification system for eukaryotic transposable elements, Nat. Rev. Genet, vol.8, pp.973-982, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00169819

W. Maka?owski, A. Pande, V. Gotea, and I. Maka?owska, Transposable elements and their identification, Methods Mol. Biol, vol.855, pp.337-359, 2012.

R. E. Mills, E. A. Bennett, R. C. Iskow, and S. E. Devine, Which transposable elements are active in the human genome?, Trends Genet, vol.23, pp.183-191, 2007.

H. Quesneville, C. M. Bergman, O. Andrieu, D. Autard, D. Nouaud et al., Combined evidence annotation of transposable elements in genome sequences, PLoS Comput. Biol, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00000104

A. P. Dowsett and M. W. Young, Differing levels of dispersed repetitive DNA among closely related species of Drosophila, Proc. Natl. Acad. Sci, vol.79, pp.4570-4574, 1982.

M. G. Kidwell and D. R. Lisch, Transposable elements and host genome evolution, Trends Ecol. Evol, vol.15, pp.95-99, 2000.

C. Biémont and C. Vieira, Genetics: Junk DNA as an evolutionary force, Nature, vol.443, pp.521-524, 2006.

C. Feschotte, Transposable elements and the evolution of regulatory networks, Nat. Rev. Genet, vol.9, pp.397-405, 2008.

J. A. Frank and C. Feschotte, Co-option of endogenous viral sequences for host cell function, Curr. Opin. Virol, vol.25, pp.81-89, 2017.

M. Friedli and D. Trono, The developmental control of transposable elements and the evolution of higher species, Annu. Rev. Cell Dev. Biol, vol.31, pp.429-451, 2015.

E. J. Pritham, Y. H. Zhang, C. Feschotte, and R. V. Kesseli, An Ac-like transposable element family with transcriptionally active Y-linked copies in the white campion Silene latifolia, Genetics, vol.165, pp.799-807, 2003.

S. Okada, T. Sone, M. Fujisawa, S. Nakayama, M. Takenaka et al., The Y chromosome in the liverwort Marchantia polymorpha has accumulated unique repeat sequences harboring a male-specific gene, Proc. Natl. Acad. Sci, vol.98, pp.9454-9459, 2001.

D. Bachtrog, E. Hom, K. M. Wong, X. Maside, and P. De-jong, Genomic degradation of a young Y chromosome in Drosophila miranda, Genome Biol, vol.9, 2008.

Z. Liu, P. H. Moore, H. Ma, C. M. Ackerman, M. Ragiba et al., A primitive Y chromosome in papaya marks incipient sex chromosome evolution, Nature, vol.427, pp.348-352, 2004.

M. Kondo, U. Hornung, I. Nanda, S. Imai, T. Sasaki et al., Genomic organization of the sex-determining and adjacent regions of the sex chromosomes of medaka, Genome Res, vol.16, pp.815-826, 2006.

C. L. Peichel, J. A. Ross, C. K. Matson, M. Dickson, J. Grimwood et al., The master sex-determination locus in threespine sticklebacks is on a nascent Y chromosome, Curr. Biol, vol.14, pp.1416-1424, 2004.

R. K. Slotkin and R. Martienssen, Transposable elements and the epigenetic regulation of the genome, Nat. Rev. Genet, vol.8, pp.272-285, 2007.

J. L. Thorson, M. Smithson, D. Beck, I. Sadler-riggleman, E. Nilsson et al., Epigenetics and adaptive phenotypic variation between habitats in an asexual snail

A. F. Fernández, E. G. Toraño, R. G. Urdinguio, A. G. Lana, I. A. Fernández et al., The epigenetic basis of adaptation and responses to environmental change: perspective on human reproduction, Adv. Exp. Med. Biol, vol.753, pp.97-117, 2014.

H. Chung, M. R. Bogwitz, C. Mccart, A. Andrianopoulos, R. H. French-constant et al., Cis-regulatory elements in the accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6g1, Genetics, vol.175, pp.1071-1077, 2007.

L. Mateo, A. Ullastres, and J. González, A transposable element insertion confers xenobiotic resistance in Drosophila, PLoS Genet, vol.10, 2014.

A. Kanazawa, B. Liu, F. Kong, S. Arase, and J. Abe, Adaptive evolution involving gene duplication and insertion of a novel Ty1/copia-like retrotransposon in soybean, J. Mol. Evol, vol.69, pp.164-175, 2009.

O. Rey, E. Danchin, M. Mirouze, C. Loot, and S. Blanchet, Adaptation to global change: A transposable element-epigenetics perspective, Trends Ecol. Evol, vol.31, pp.514-526, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02099870

P. Marin, J. Genitoni, D. Barloy, S. Maury, P. Gibert et al., The potential role of epigenetics and transposable elements in facilitating biological invasions, Funct. Ecol, 2019.

R. K. Slotkin, The case for not masking away repetitive DNA, Mob. DNA, vol.9, p.15, 2018.

P. Goerner-potvin and G. Bourque, Computational tools to unmask transposable elements, Nat. Rev. Genet, vol.19, pp.688-704, 2018.

, Drosophila 12 Genomes Consortium. Evolution of genes and genomes on the Drosophila phylogeny, Nature, vol.450, pp.203-218, 2007.

R. A. Hoskins, J. W. Carlson, K. H. Wan, S. Park, I. Mendez et al.,

, Genome Res, vol.25, pp.445-458, 2015.

J. S. Kaminker, C. M. Bergman, B. Kronmiller, J. Carlson, R. Svirskas et al., The transposable elements of the Drosophila melanogaster euchromatin: A genomics perspective, Genome Biol, vol.3, 2002.

E. Lerat, C. Rizzon, and C. Biémont, Sequence divergence within transposable element families in the Drosophila melanogaster genome, Genome Res, vol.13, pp.1889-1896, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00427441

E. Lerat, N. Burlet, C. Biémont, and C. Vieira, Comparative analysis of transposable elements in the melanogaster subgroup sequenced genomes, Gene, vol.473, pp.100-109, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00850380

C. Sessegolo, N. Burlet, and A. Haudry, Strong phylogenetic inertia on genome size and transposable element content among 26 species of flies, Biol. Lett, p.12, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01907738

B. M. Wiegmann, S. Richards, . Genomes, and . Diptera, Curr. Opin. Insect Sci, vol.25, pp.116-124, 2018.

P. Arensburger, K. Megy, R. M. Waterhouse, J. Abrudan, P. Amedeo et al., Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics, Science, vol.330, pp.86-88, 2010.

V. Nene, J. R. Wortman, D. Lawson, B. Haas, C. Kodira et al., Genome sequence of Aedes aegypti, a major arbovirus vector, Science, vol.316, pp.1718-1723, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00156214

C. Goubert, L. Modolo, C. Vieira, C. V. Moro, P. Mavingui et al., De novo assembly and annotation of the Asian tiger mosquito (Aedes albopictus) repeatome with dnaPipeTE from raw genomic reads and comparative analysis with the yellow fever mosquito (Aedes aegypti), Genome Biol. Evol, vol.7, pp.1192-1205, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01227710

M. Lipatov, K. Lenkov, D. A. Petrov, and C. M. Bergman, Paucity of chimeric gene-transposable element transcripts in the Drosophila melanogaster genome, BMC Biol, vol.3, p.24, 2005.

M. Deloger, F. M. Cavalli, E. Lerat, C. Biémont, M. F. Sagot et al., Identification of expressed transposable element insertions in the sequenced genome of Drosophila melanogaster, Gene, vol.439, pp.55-62, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00428351

G. Sienski, D. Dönertas, and J. Brennecke, Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression, Cell, vol.151, pp.964-980, 2012.

B. R. Graveley, A. N. Brooks, J. W. Carlson, M. O. Duff, J. M. Landolin et al., The developmental transcriptome of Drosophila melanogaster, Nature, vol.471, pp.473-479, 2011.

E. Lerat, M. Fablet, L. Modolo, H. Lopez-maestre, and C. Vieira, TEtools facilitates big data expression analysis of transposable elements and reveals an antagonism between their activity and that of piRNA genes, Nucleic Acids Res, vol.45, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01524877

A. J. Bewick, K. J. Vogel, A. J. Moore, and R. J. Schmitz, Evolution of DNA methylation across insects, Mol. Biol. Evol, vol.34, 2016.

P. Provataris, K. Meusemann, O. Niehuis, S. Grath, and B. Misof, Signatures of DNA methylation across insects suggest reduced DNA methylation levels in holometabola, Genome Biol. Evol, vol.10, pp.1185-1197, 2018.

M. F. Sentmanat and S. C. Elgin, Ectopic assembly of heterochromatin in Drosophila melanogaster triggered by transposable elements, Proc. Natl. Acad. Sci, vol.109, pp.14104-14109, 2012.

Y. C. Lee, The role of piRNA-mediated epigenetic silencing in the population dynamics of transposable elements in Drosophila melanogaster, PLoS Genet, vol.11, 2015.

L. Guio, M. G. Barrón, and J. González, The transposable element Bari-Jheh mediates oxidative stress response in Drosophila, Mol. Ecol, vol.23, pp.2020-2030, 2014.

L. Guio, C. Vieira, and J. González, Stress affects the epigenetic marks added by natural transposable element insertions in Drosophila melanogaster, Sci. Rep, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01965035

J. G. Wood, B. C. Jones, N. Jiang, C. Chang, S. Hosier et al., Chromatin-modifying genetic interventions suppress age-associated transposable element activation and extend life span in Drosophila, Proc. Natl. Acad. Sci, vol.113, pp.11277-11282, 2016.

B. Lemos, L. O. Araripe, and D. L. Hartl, Polymorphic Y chromosomes harbor cryptic variation with manifold functional consequences, Science, vol.319, pp.91-93, 2008.

B. Lemos, A. T. Branco, and D. L. Hartl, Epigenetic effects of polymorphic Y chromosomes modulate chromatin components, immune response, and sexual conflict, Proc. Natl. Acad. Sci, vol.107, pp.15826-15831, 2010.

S. H. Wang, R. Nan, M. C. Accardo, M. Sentmanat, P. Dimitri et al., A distinct type of heterochromatin at the telomeric region of the Drosophila melanogaster Y chromosome, PLoS ONE, vol.9, 2014.

E. Brown and D. Bachtrog, The Y chromosome contributes to sex-specific aging in Drosophila, 2017.

M. Kulis and M. Esteller, DNA methylation and cancer, Adv. Genet, vol.70, pp.27-56, 2010.

J. P. Ross, K. N. Rand, and P. L. Molloy, Hypomethylation of repeated DNA sequences in cancer, Epigenomics, vol.2, pp.245-269, 2010.

H. Xie, M. Wang, M. D. Bonaldo, V. Rajaram, W. Stellpflug et al., Epigenomic analysis of Alu repeats in human ependymomas, Proc. Natl. Acad. Sci, vol.107, pp.6952-6957, 2010.

M. Jordà, A. Díez-villanueva, I. Mallona, B. Martín, S. Lois et al., The epigenetic landscape of Alu repeats delineates the structural and functional genomic architecture of colon cancer cells, Genome Res, vol.27, pp.118-132, 2017.

H. Guo, P. Zhu, L. Yan, R. Li, B. Hu et al., The DNA methylation landscape of human early embryos, Nature, vol.511, pp.606-610, 2014.

M. Walter, A. Teissandier, and R. Pérez-palacios, Bourc'his, D. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells, vol.5, 2016.

R. V. Berrens, S. Andrews, D. Spensberger, F. Santos, W. Dean et al., An endosiRNA-Based Repression Mechanism Counteracts Transposon Activation during Global DNA Demethylation in Embryonic Stem Cells, Cell Stem Cell, vol.21, pp.694-703, 2017.

R. A. Brink, A genetic change associated with the R locus in maize which is directed and potentially reversible, Genetics, vol.41, pp.872-889, 1956.

J. L. Kermicle, Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission, Genetics, vol.66, pp.69-85, 1970.

B. Mcclintock, Chromosome organization and genic expression, Cold Spring Harb. Symp. Quant. Biol, vol.16, pp.13-47, 1951.

B. Mcclintock, Controlling elements and the gene, Cold Spring Harb. Symp. Quant. Biol, vol.21, pp.197-216, 1956.

B. Mcclintock, The significance of responses of the genome to challenge, Science, vol.226, pp.792-801, 1984.

H. Zhang, Z. Lang, and J. Zhu, Dynamics and function of DNA methylation in plants, Nat. Rev. Mol. Cell Biol, vol.19, pp.489-506, 2018.

J. A. Law and S. E. Jacobsen, Establishing, maintaining and modifying DNA methylation patterns in plants and animals, Nat. Rev. Genet, vol.11, pp.204-220, 2010.

M. A. Matzke and R. A. Mosher, RNA-directed DNA methylation: An epigenetic pathway of increasing complexity, Nat. Rev. Genet, vol.15, pp.394-408, 2014.

S. K. Kenchanmane-raju, A. C. Barnes, J. C. Schnable, and R. L. Roston, Low-temperature tolerance in land plants: Are transcript and membrane responses conserved?, Plant Sci, vol.276, pp.73-86, 2018.

Z. Lippman, A. Gendrel, M. Black, M. W. Vaughn, N. Dedhia et al., Role of transposable elements in heterochromatin and epigenetic control, Nature, vol.430, pp.471-476, 2004.

M. Mirouze, J. Reinders, E. Bucher, T. Nishimura, K. Schneeberger et al., Selective epigenetic control of retrotransposition in Arabidopsis, Nature, vol.461, pp.427-430, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01917183

S. Tsukahara, A. Kobayashi, A. Kawabe, O. Mathieu, A. Miura et al., Bursts of retrotransposition reproduced in Arabidopsis, Nature, vol.461, pp.423-426, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01917186

D. H. Sanchez and J. Paszkowski, Heat-induced release of epigenetic silencing reveals the concealed role of an imprinted plant gene, PLoS Genet, vol.10, 2014.

A. Pecinka, H. Q. Dinh, T. Baubec, M. Rosa, N. Lettner et al., Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis, Plant Cell, vol.22, pp.3118-3129, 2010.

P. Negi, A. N. Rai, and P. Suprasanna, Moving through the stressed genome: Emerging regulatory roles for transposons in plant stress response, Front. Plant Sci, vol.7, 1448.

J. M. Casacuberta and M. A. Grandbastien, Characterisation of LTR sequences involved in the protoplast specific expression of the tobacco Tnt1 retrotransposon, Nucleic Acids Res, vol.21, pp.2087-2093, 1993.

V. V. Cavrak, N. Lettner, S. Jamge, A. Kosarewicz, L. M. Bayer et al., How a retrotransposon exploits the plant's heat stress response for its activation, PLoS Genet, vol.10, 2014.

E. Butelli, C. Licciardello, Y. Zhang, J. Liu, S. Mackay et al., Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges, Plant Cell, vol.24, pp.1242-1255, 2012.

J. Morata, M. Tormo, K. G. Alexiou, C. Vives, S. E. Ramos-onsins et al., The evolutionary consequences of transposon-related pericentromer expansion in melon, Genome Biol. Evol, vol.10, pp.1584-1595, 2018.

N. M. Springer, D. Lisch, and Q. Li, Creating order from chaos: Epigenome dynamics in plants with complex genomes, Plant Cell, vol.28, pp.314-325, 2016.

R. Fujimoto, Y. Kinoshita, A. Kawabe, T. Kinoshita, K. Takashima et al., Evolution and control of imprinted FWA genes in the genus arabidopsis, PLoS Genet, 2008.

X. Song and X. Cao, Transposon-mediated epigenetic regulation contributes to phenotypic diversity and environmental adaptation in rice, Curr. Opin. Plant Biol, vol.36, pp.111-118, 2017.

L. Quadrana, A. Bortolini-silveira, G. F. Mayhew, C. Leblanc, R. A. Martienssen et al., The Arabidopsis thaliana mobilome and its impact at the species level

L. Quadrana, M. Etcheverry, A. Gilly, E. Caillieux, M. Madoui et al., Transposon accumulation lines uncover histone H2A.Z-driven integration bias towards environmentally responsive genes, 2018.

M. Thieme and E. Bucher, Transposable elements as tool for crop improvement, Adv. Bot. Res, vol.88, pp.165-202, 2018.

M. Berriman, B. J. Haas, P. T. Loverde, R. A. Wilson, G. P. Dillon et al., The genome of the blood fluke Schistosoma mansoni, Nature, vol.460, pp.352-358, 2009.

J. M. Lepesant, D. Roquis, R. Emans, C. Cosseau, N. Arancibia et al., Combination of de novo assembly of massive sequencing reads with classical repeat prediction improves identification of repetitive sequences in Schistosoma mansoni, Exp. Parasitol, vol.130, pp.470-474, 2012.
URL : https://hal.archives-ouvertes.fr/halsde-00674586

B. K. Wijayawardena, J. A. Dewoody, and D. J. Minchella, The genomic proliferation of transposable elements in colonizing populations: Schistosoma mansoni in the new world, Genetica, vol.143, pp.287-298, 2015.

G. S. Philippsen and R. Demarco, Impact of transposable elements in the architecture of genes of the human parasite Schistosoma mansoni, Mol. Biochem. Parasitol, 2018.

G. Raddatz, P. M. Guzzardo, N. Olova, M. R. Fantappie, M. Rampp et al., Dnmt2-dependent methylomes lack defined DNA methylation patterns, Proc. Natl. Acad. Sci, vol.110, pp.8627-8631, 2013.

K. K. Geyer, I. W. Chalmers, N. Mackintosh, J. E. Hirst, R. Geoghegan et al., Cytosine methylation is a conserved epigenetic feature found throughout the phylum Platyhelminthes

D. Roquis, A. Taudt, K. K. Geyer, G. Padalino, K. F. Hoffmann et al., Histone methylation changes are required for life cycle progression in the human parasite Schistosoma mansoni, PLoS Pathog, vol.14, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01808531

M. A. Picard, J. Boissier, D. Roquis, C. Grunau, J. Allienne et al., Sex-biased transcriptome of Schistosoma mansoni: Host-parasite interaction, genetic determinants and epigenetic regulators are associated with sexual differentiation, PLoS Negl. Trop. Dis, vol.10, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01387886

D. R. Hoen, G. Hickey, G. Bourque, J. Casacuberta, R. Cordaux et al., A call for benchmarking transposable element annotation methods, Mob. DNA, vol.6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204840

J. González and D. A. Petrov, Evolution of Genome Content: Population Dynamics of Transposable Elements in Flies and Humans, Methods Mol. Biol, vol.855, pp.361-383, 2012.

T. Flutre, E. Duprat, C. Feuillet, and H. Quesneville, Considering transposable element diversification in de novo annotation approaches, PLoS ONE, vol.6, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00956366

J. Berthelier, N. Casse, N. Daccord, V. Jamilloux, B. Saint-jean et al., A transposable element annotation pipeline and expression analysis reveal potentially active elements in the microalga Tisochrysis lutea, BMC Genom, vol.19, 2018.

C. Stewart, D. Kural, M. P. Strömberg, J. A. Walker, M. K. Konkel et al., A comprehensive map of mobile element insertion polymorphisms in humans, PloS Genet, 2011.

E. Hénaff, L. Zapata, J. M. Casacuberta, S. Ossowski, and . Jitterbug, Somatic and germline transposon insertion detection at single-nucleotide resolution, BMC Genom, vol.16, p.768, 2015.

J. Zhuang, J. Wang, W. Theurkauf, and Z. Weng, TEMP: A computational method for analyzing transposable element polymorphism in populations, Nucleic Acids Res, vol.42, pp.6826-6838, 2014.

E. J. Gardner, V. K. Lam, D. N. Harris, N. T. Chuang, E. C. Scott et al.,

S. E. Devine, The mobile element locator tool (MELT): Population-scale mobile element discovery and biology, Genome Res, vol.27, pp.1916-1929, 2017.

R. Köfler, D. Gómez-sánchez, C. Schlötterer, and . Popoolationte2, Comparative population genomics of transposable elements using pool-seq, Mol. Biol. Evol, vol.33, pp.2759-2764, 2016.

J. R. Adrion, M. J. Song, D. R. Schrider, M. W. Hahn, and S. Schaack, Genome-wide estimates of transposable element insertion and deletion rates in Drosophila melanogaster, Genome Biol. Evol, vol.9, pp.1329-1340, 2017.

M. Carpentier, E. Manfroi, F. Wei, H. Wu, E. Lasserre et al., Retrotranspositional landscape of Asian rice revealed by 3000 genomes, Nat. Commun, vol.10, p.24, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02098307

E. Disdero, J. Filée, and . Lorte, Detecting transposon-induced genomic variants using low coverage PacBio long read sequences, Mob. DNA, vol.8, issue.5, 2017.

A. D. Ewing, Transposable element detection from whole genome sequence data, Mob. DNA, vol.6, 2015.

P. Koch, M. Platzer, and B. R. Downie, RepARK-De novo creation of repeat libraries from whole-genome NGS reads, Nucleic Acids Res, vol.42, pp.1-12, 2014.

M. Zytnicki, E. Akhunov, and H. Quesneville, Tedna: A transposable element de novo assembler, Bioinformatics, vol.30, pp.1-3, 2014.

P. Novák, P. Neumann, J. Pech, J. Steinhaisl, and J. Macas, RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads, Bioinformatics, vol.29, pp.792-793, 2013.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, pp.357-359, 2012.

J. Jurka, V. V. Kapitonov, A. Pavlicek, P. Klonowski, O. Kohany et al., Repbase update, a database of eukaryotic repetitive elements, Cytogenet. Genome Res, vol.110, pp.462-467, 2005.

T. S. Mikkelsen, M. Ku, D. B. Jaffe, B. Issac, E. Lieberman et al., Genome-wide maps of chromatin state in pluripotent and lineage-committed cells, Nature, vol.448, pp.553-560, 2007.

J. A. Rosenfeld, Z. Wang, D. E. Schones, K. Zhao, R. Desalle et al., Determination of enriched histone modifications in non-genic portions of the human genome, BMC Genom, vol.10, 2009.

D. S. Day, L. J. Luquette, P. J. Park, and P. V. Kharchenko, Estimating enrichment of repetitive elements from high-throughput sequence data, Genome Biol, vol.11, 2010.

A. Huda, L. Mariño-ramírez, and I. K. Jordan, Epigenetic histone modifications of human transposable elements: Genome defense versus exaptation, Mob. DNA, vol.1, issue.2, 2010.

A. F. Smit, R. Hubley, and P. Green, , p.30, 2019.

B. W. Han, W. Wang, P. D. Zamore, and Z. Weng, piPipes: A set of pipelines for piRNA and transposon analysis via small RNA-seq, RNA-seq, degradome-and CAGE-seq, ChIP-seq and genomic DNA sequencing, Bioinformatics, vol.31, pp.593-595, 2015.

S. Beck and V. K. Rakyan, The methylome: Approaches for global DNA methylation profiling, Trends Genet, vol.24, pp.231-237, 2008.

K. R. Pomraning, K. M. Smith, and M. Freitag, Genome-wide high throughput analysis of DNA methylation in eukaryotes, vol.47, pp.142-150, 2009.

H. Xie, M. Wang, M. D. Bonaldo, C. Smith, V. Rajaram et al., High-throughput sequence-based epigenomic analysis of Alu repeats in human cerebellum, Nucleic Acids Res, vol.37, pp.4331-4340, 2009.

J. Su, X. Shao, H. Liu, S. Liu, Q. Wu et al., Genome-wide dynamic changes of DNA methylation of repetitive elements in human embryonic stem cells and fetal fibroblasts, Genomics, vol.99, pp.10-17, 2012.

M. B. Ekram and J. Kim, High-throughput targeted repeat element bisulfite sequencing (HT-TREBS): genome-wide DNA methylation analysis of IAP LTR retrotransposon, PLoS ONE, vol.9, 2014.

J. Daron, R. K. Slotkin, and . Epiteome, Simultaneous detection of transposable element insertion sites and their DNA methylation levels, Genome Biol, vol.18, p.91, 2017.

J. Brennecke, C. D. Malone, A. A. Aravin, R. Sachidanandam, A. Stark et al., An epigenetic role for maternally inherited piRNAs in transposon silencing, Science, vol.322, pp.1387-1392, 2008.

W. R. Yang, D. Ardeljan, C. N. Pacyna, L. M. Payer, and K. H. Burns, SQuIRE reveals locus-specific regulation of interspersed repeat expression, Nucleic Acids Res, 2019.