M. Auffan, J. Rose, J. Bottero, G. V. Lowry, J. Jolivet et al., Towards a Definition of Inorganic Nanoparticles from an Environmental, Health and Safety Perspective, Nat. Nanotechnol, vol.4, pp.634-641, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00446833

P. Wick, A. Louw-gaume, M. Kucki, H. Krug, K. Kostarelos et al., Classification Framework for Graphene-Based Materials, Angew. Chem. Int. Ed, vol.53, pp.149-158, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01447812

V. Neves, E. Heister, S. Costa, C. Tîlmaciu, E. Flahaut et al., Design of Double-Walled Carbon Nanotubes for Biomedical Applications, Nanotechnology, vol.23, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00858588

M. Monthioux, P. Serp, B. Caussat, E. Flahaut, M. Razafinimanana et al., Carbon Nanotubes. In Springer Handbook of Nanotechnology, pp.193-247, 2017.

, Materials, vol.12, pp.624-639, 2019.

A. E. Nel, L. Mädler, D. Velegol, T. Xia, E. M. Hoek et al., Understanding Biophysicochemical Interactions at the Nano-Bio Interface, Nat. Mater, vol.8, pp.543-557, 2009.

P. Aggarwal, J. B. Hall, C. B. Mcleland, M. A. Dobrovolskaia, and S. E. Mcneil, Nanoparticle Interaction with Plasma Proteins as It Relates to Particle Biodistribution, Biocompatibility and Therapeutic Efficacy, Adv. Drug Deliv. Rev, vol.61, pp.428-437, 2009.

T. Bortolamiol, P. Lukanov, A. Galibert, B. Soula, P. Lonchambon et al., Double-Walled Carbon Nanotubes: Quantitative Purification Assessment, Balance between Purification and Degradation and Solution Filling as an Evidence of Opening, Carbon, vol.78, pp.79-90, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01445549

Y. Zhou, Y. Fang, and R. P. Ramasamy, Non-Covalent Functionalization of Carbon Nanotubes for Electrochemical Biosensor Development, Sensors, vol.19, 2019.

S. F. Oliveira, G. Bisker, N. A. Bakh, S. L. Gibbs, M. P. Landry et al., Protein Functionalized Carbon Nanomaterials for Biomedical Applications, Carbon, vol.95, pp.767-779, 2015.

M. I. Sajid, U. Jamshaid, T. Jamshaid, N. Zafar, H. Fessi et al., Carbon Nanotubes from Synthesis to in Vivo Biomedical Applications, Int. J. Pharm, vol.501, pp.278-299, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01950973

B. P. Grady, The Use of Solution Viscosity to Characterize Single-Walled Carbon Nanotube Dispersions, Macromol. Chem. Phys, vol.207, pp.2167-2169, 2006.

E. Flahaut, R. Bacsa, A. Peigney, and C. Laurent, Gram-Scale CCVD Synthesis of Double-Walled Carbon Nanotubes, Chem. Commun, vol.12, 1442.
URL : https://hal.archives-ouvertes.fr/hal-00926035

C. Laurent, E. Flahaut, and A. Peigney, The Weight and Density of Carbon Nanotubes versus the Number of Walls and Diameter, Carbon, vol.48, pp.2994-2996, 2010.

M. Mohajeri, B. Behnam, and A. Sahebkar, Biomedical Applications of Carbon Nanomaterials: Drug and Gene Delivery Potentials, J. Cell. Physiol, vol.234, pp.298-319, 2018.

H. Gong, R. Peng, and Z. Liu, Carbon Nanotubes for Biomedical Imaging: The Recent Advances, Adv. Drug Deliv. Rev, vol.65, pp.1951-1963, 2013.

N. Punbusayakul, S. Talapatra, P. M. Ajayan, and W. Surareungchai, Label-Free as-Grown Double Wall Carbon Nanotubes Bundles for Salmonella Typhimurium Immunoassay, Chem. Cent. J, vol.7, 2013.

I. Ojeda, M. Barrejón, L. M. Arellano, A. González-cortés, P. Yáñez-sedeño et al., Grafted-Double Walled Carbon Nanotubes as Electrochemical Platforms for Immobilization of Antibodies Using a Metallic-Complex Chelating Polymer: Application to the Determination of Adiponectin Cytokine in Serum, Biosens. Bioelectron, vol.74, pp.24-29, 2015.

M. B. Wayu, M. J. Pannell, N. Labban, W. S. Case, J. A. Pollock et al., Functionalized Carbon Nanotube Adsorption Interfaces for Electron Transfer Studies of Galactose Oxidase, Bioelectrochemistry, vol.125, pp.116-126, 2019.

H. Chen, J. Huang, D. Fam, and A. Tok, Horizontally Aligned Carbon Nanotube Based Biosensors for Protein Detection, vol.3, 2016.

S. Mansouri-majd and A. Salimi, Ultrasensitive Flexible FET-Type Aptasensor for CA 125 Cancer Marker Detection Based on Carboxylated Multiwalled Carbon Nanotubes Immobilized onto Reduced Graphene Oxide Film, Anal. Chim. Acta, vol.1000, pp.273-282, 2018.

P. Ramnani, Y. Gao, M. Ozsoz, and A. Mulchandani, Electronic Detection of MicroRNA at Attomolar Level with High Specificity, Anal. Chem, vol.85, pp.8061-8064, 2013.

R. Peng, X. S. Tang, and D. Li, Detection of Individual Molecules and Ions by Carbon Nanotube-Based Differential Resistive Pulse Sensor, Small, vol.14, 2018.

X. Zhang, Y. Xu, and B. Ye, An Efficient Electrochemical Glucose Sensor Based on Porous Nickel-Based Metal Organic Framework/Carbon Nanotubes Composite (Ni-MOF/CNTs), J. Alloys Compd, vol.767, pp.651-656, 2018.

K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen et al., A Route to Brightly Fluorescent Carbon Nanotubes for Near-Infrared Imaging in Mice, Nat. Nanotechnol, vol.4, pp.773-780, 2009.

K. Welsher, S. P. Sherlock, and H. Dai, Deep-Tissue Anatomical Imaging of Mice Using Carbon Nanotube Fluorophores in the Second Near-Infrared Window, Proc. Natl. Acad. Sci, vol.108, pp.8943-8948, 2011.

, Materials, vol.12, pp.624-640, 2019.

G. Hong, D. Shuo, A. L. Antaris, C. Chen, B. Zhang et al., Through-Skull Fluorescence Imaging of the Brain in a New Near-Infrared Window, Nat. Photonics, vol.8, 2014.

J. Pan, F. Li, and J. H. Choi, Single-Walled Carbon Nanotubes as Optical Probes for Bio-Sensing and Imaging, J. Mater. Chem. B, vol.5, pp.6511-6522, 2017.

M. Yudasaka, Y. Yomogida, M. Zhang, T. Tanaka, M. Nakahara et al., Near-Infrared Photoluminescent Carbon Nanotubes for Imaging of Brown Fat

A. De-la-zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati et al., Carbon Nanotubes as Photoacoustic Molecular Imaging Agents in Living Mice, Nat. Nanotechnol, vol.3, pp.557-562, 2008.

A. De-la-zerda, Z. Liu, S. Bodapati, R. Teed, S. Vaithilingam et al., Ultrahigh Sensitivity Carbon Nanotube Agents for Photoacoustic Molecular Imaging in Living Mice, Nano Lett, vol.10, pp.2168-2172, 2010.

Z. Liu, S. Tabakman, S. Sherlock, X. Li, Z. Chen et al., Multiplexed Five-Color Molecular Imaging of Cancer Cells and Tumor Tissues with Carbon Nanotube Raman Tags in the near-Infrared, Nano Res, vol.3, pp.222-233, 2010.

E. Gaufrès, S. Marcet, V. Aymong, N. Y. Tang, A. -w.;-favron et al., Hyperspectral Raman Imaging Using Bragg Tunable Filters of Graphene and Other Low-Dimensional Materials: Hyperspectral Raman Imaging Using Bragg Tunable Filters of Graphene and Other Low-Dimensional Materials, J. Raman Spectrosc, vol.49, pp.174-182, 2018.

S. Y. Hong, G. Tobias, K. T. Al-jamal, B. Ballesteros, H. Ali-boucetta et al., Filled and Glycosylated Carbon Nanotubes for in Vivo Radioemitter Localization and Imaging, Nat. Mater, vol.9, pp.485-490, 2010.

A. Servant, I. Jacobs, C. Bussy, C. Fabbro, T. Da-ros et al., Gadolinium-Functionalised Multi-Walled Carbon Nanotubes as a T 1 Contrast Agent for MRI Cell Labelling and Tracking, Carbon, vol.97, pp.126-133, 2016.

V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo et al., Carbon Nanotube Substrates Boost Neuronal Electrical Signaling. Nano Lett, vol.5, pp.1107-1110, 2005.

A. Mazzatenta, M. Giugliano, S. Campidelli, L. Gambazzi, L. Businaro et al., Interfacing Neurons with Carbon Nanotubes: Electrical Signal Transfer and Synaptic Stimulation in Cultured Brain Circuits, J. Neurosci, vol.27, pp.6931-6936, 2007.

A. Béduer, F. Seichepine, E. Flahaut, I. Loubinoux, L. Vaysse et al., Elucidation of the Role of Carbon Nanotube Patterns on the Development of Cultured Neuronal Cells, Langmuir, vol.28, pp.17363-17371, 2012.

B. Matta-domjan, A. King, S. Totti, C. Matta, G. Dover et al., Biophysical Interactions between Pancreatic Cancer Cells and Pristine Carbon Nanotube Substrates: Potential Application for Pancreatic Cancer Tissue Engineering: pancreatic Cancer on Pristine CNT Substrates, J. Biomed. Mater. Res. B Appl. Biomater, vol.106, pp.1637-1644, 2018.

M. A. Correa-duarte, N. Wagner, J. Rojas-chapana, C. Morsczeck, M. Thie et al., Fabrication and Biocompatibility of Carbon Nanotube-Based 3D Networks as Scaffolds for Cell Seeding and Growth, Nano Lett, vol.4, pp.2233-2236, 2004.

A. Abarrategi, M. C. Gutiérrez, C. Moreno-vicente, M. J. Hortigüela, V. Ramos et al., Multiwall Carbon Nanotube Scaffolds for Tissue Engineering Purposes, Biomaterials, vol.29, pp.94-102, 2008.

J. Z. Han, A. E. Rider, M. Ishaq, S. Kumar, A. Kondyurin et al., Carbon Nanostructures for Hard Tissue Engineering. RSC Adv, vol.3, 2013.

Z. Liu, X. Sun, N. Nakayama-ratchford, and H. Dai, Supramolecular Chemistry on Water-Soluble Carbon Nanotubes for Drug Loading and Delivery, ACS Nano, vol.1, pp.50-56, 2007.

Z. Liu, A. C. Fan, K. Rakhra, S. Sherlock, A. Goodwin et al., Supramolecular Stacking of Doxorubicin on Carbon Nanotubes for In Vivo Cancer Therapy, Angew. Chem, vol.121, pp.7804-7808, 2009.

C. Wells, O. Vollin-bringel, V. Fiegel, S. Harlepp, B. Van-der-schueren et al., Engineering of Mesoporous Silica Coated Carbon-Based Materials Optimized for an Ultrahigh Doxorubicin Payload and a Drug Release Activated by PH, T, and NIR-Light, Adv. Funct. Mater, vol.28, 2018.

W. Wu, R. Li, X. Bian, Z. Zhu, D. Ding et al., Covalently Combining Carbon Nanotubes with Anticancer Agent: Preparation and Antitumor Activity, ACS Nano, vol.3, pp.2740-2750, 2009.

X. Liu, D. Xu, C. Liao, Y. Fang, and B. Guo, Development of a Promising Drug Delivery for Formononetin: Cyclodextrin-Modified Single-Walled Carbon Nanotubes, J. Drug Deliv. Sci. Technol, vol.43, pp.461-468, 2018.

N. W. Shi-kam, T. C. Jessop, P. A. Wender, and H. Dai, Nanotube Molecular Transporters: Internalization of Carbon Nanotube?Protein Conjugates into Mammalian Cells, J. Am. Chem. Soc, vol.126, pp.6850-6851, 2004.

K. Kostarelos, L. Lacerda, G. Pastorin, W. Wu, S. Wieckowski et al., Cellular Uptake of Functionalized Carbon Nanotubes Is Independent of Functional Group and Cell Type, Nat. Nanotechnol, vol.2, pp.108-113, 2007.

G. Bartholomeusz, P. Cherukuri, J. Kingston, L. Cognet, R. L. Jr et al., In Vivo Therapeutic Silencing of Hypoxia-Inducible Factor 1 Alpha (HIF-1) Using Single-Walled Carbon Nanotubes Noncovalently Coated with SiRNA, Nano Res, vol.13, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00505889

M. S. Ladeira, V. A. Andrade, E. R. Gomes, C. J. Aguiar, E. R. Moraes et al., Highly Efficient SiRNA Delivery System into Human and Murine Cells Using Single-Wall Carbon Nanotubes, Nanotechnology, vol.21, 2010.

V. Sanz, C. Tilmacîu, B. Soula, E. Flahaut, H. M. Coley et al., Chloroquine-Enhanced Gene Delivery Mediated by Carbon Nanotubes, Carbon, vol.49, pp.5348-5358, 2011.

A. , K. T. Gherardini, L. Bardi, G. Nunes, A. Guo et al., Functional Motor Recovery from Brain Ischemic Insult by Carbon Nanotube-Mediated SiRNA Silencing, Proc. Natl. Acad. Sci, vol.108, pp.10952-10957, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00605127

A. Mazzaglia, A. Scala, G. Sortino, R. Zagami, Y. Zhu et al., Intracellular Trafficking and Therapeutic Outcome of Multiwalled Carbon Nanotubes Modified with Cyclodextrins and Polyethylenimine, Colloids Surf. B Biointerfaces, vol.163, pp.55-63, 2018.

B. Kaboudin, F. Saghatchi, F. Kazemi, and S. Akbari-birgani, A Novel Magnetic Carbon Nanotubes Functionalized with Pyridine Groups: Synthesis, Characterization and Their Application as an Efficient Carrier for Plasmid DNA and Aptamer, vol.3, pp.6743-6749, 2018.

L. Xu, L. Feng, S. Dong, J. Hao, and Q. Yu, Carbon Nanotubes Modified by a Paramagnetic Cationic Surfactant for Migration of DNA and Proteins, Colloids Surf. Physicochem. Eng. Asp, vol.559, pp.201-208, 2018.

F. Kong, F. Liu, W. Li, X. Guo, Z. Wang et al., Smart Carbon Nanotubes with Laser-Controlled Behavior in Gene Delivery and Therapy through a Non-Digestive Trafficking Pathway, Small, vol.12, pp.6753-6766, 2016.

A. Burke, X. Ding, R. Singh, R. A. Kraft, N. Levi-polyachenko et al., Long-Term Survival Following a Single Treatment of Kidney Tumors with Multiwalled Carbon Nanotubes and near-Infrared Radiation, Proc. Natl. Acad. Sci, vol.106, pp.12897-12902, 2009.

C. Wang, L. Xu, C. Liang, J. Xiang, R. Peng et al., Immunological Responses Triggered by Photothermal Therapy with Carbon Nanotubes in Combination with Anti-CTLA-4 Therapy to Inhibit Cancer Metastasis, Adv. Mater, vol.26, pp.8154-8162, 2014.

S. Wang, Q. Lin, J. Chen, H. Gao, D. Fu et al., Biocompatible Polydopamine-Encapsulated Gadolinium-Loaded Carbon Nanotubes for MRI and Color Mapping Guided Photothermal Dissection of Tumor Metastasis, vol.112, pp.53-62, 2017.

Y. Zhu, Q. Sun, Y. Liu, T. Ma, L. Su et al., Decorating Gold Nanostars with Multiwalled Carbon Nanotubes for Photothermal Therapy, R. Soc. Open Sci, vol.5, 2018.

, Materials, vol.12, pp.624-642, 2019.

L. Wang, J. Shi, H. Zhang, H. Li, Y. Gao et al., Synergistic Anticancer Effect of RNAi and Photothermal Therapy Mediated by Functionalized Single-Walled Carbon Nanotubes, Biomaterials, vol.34, pp.262-274, 2013.

A. S. Hoffman, Hydrogels for Biomedical Applications, Adv. Drug Deliv. Rev, vol.64, pp.18-23, 2012.

V. Martinelli, S. Bosi, B. Peña, G. Baj, C. S. Long et al., 3D Carbon-Nanotube-Based Composites for Cardiac Tissue Engineering, ACS Appl. Bio Mater, vol.1, pp.1530-1537, 2018.

N. Mamidi, H. M. Leija, J. M. Diabb, I. Lopez-romo, D. Hernandez et al., Cytotoxicity Evaluation of Unfunctionalized Multiwall Carbon Nanotubes-Ultrahigh Molecular Weight Polyethylene Nanocomposites, J. Biomed. Mater. Res. A, vol.105, pp.3042-3049, 2017.

A. Vashist, A. Kaushik, A. Vashist, V. Sagar, A. Ghosal et al., Advances in Carbon Nanotubes-Hydrogel Hybrids in Nanomedicine for Therapeutics, Adv. Healthc. Mater, vol.7, 2018.

C. Lin and A. T. Metters, Hydrogels in Controlled Release Formulations: Network Design and Mathematical Modeling, Adv. Drug Deliv. Rev, vol.58, pp.1379-1408, 2006.

J. L. Drury and D. J. Mooney, Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications, Biomaterials, vol.24, pp.4337-4351, 2003.

N. Bhattarai, J. Gunn, and M. Zhang, Chitosan-Based Hydrogels for Controlled, Localized Drug Delivery, Adv. Drug Deliv. Rev, vol.62, pp.83-99, 2010.

Y. Qiu and K. Park, Environment-Sensitive Hydrogels for Drug Delivery, Adv. Drug Deliv. Rev, vol.64, pp.49-60, 2012.

N. Peppas, P. Bures, W. Leobandung, and H. Ichikawa, Hydrogels in Pharmaceutical Formulations, Eur. J. Pharm. Biopharm, vol.50, pp.27-46, 2000.

G. Cirillo, S. Hampel, U. G. Spizzirri, O. I. Parisi, N. Picci et al., Carbon Nanotubes Hybrid Hydrogels in Drug Delivery: A Perspective Review, BioMed Res. Int, pp.1-17, 2014.

Y. Kim, S. Park, K. Won, H. J. Kim, and S. H. Lee, Bacterial Cellulose-Carbon Nanotube Composite as a Biocompatible Electrode for the Direct Electron Transfer of Glucose Oxidase: Biocompatible Electrode for Direct Electron Transfer of Glucose Oxidase, J. Chem. Technol. Biotechnol, vol.88, pp.1067-1070, 2013.

F. N. Comba, M. R. Romero, F. S. Garay, and A. M. Baruzzi, Mucin and Carbon Nanotube-Based Biosensor for Detection of Glucose in Human Plasma, Anal. Biochem, vol.550, pp.34-40, 2018.

A. Fatoni, A. Numnuam, P. Kanatharana, W. Limbut, C. Thammakhet et al., A Highly Stable Oxygen-Independent Glucose Biosensor Based on a Chitosan-Albumin Cryogel Incorporated with Carbon Nanotubes and Ferrocene, Sens. Actuators B Chem, vol.185, pp.725-734, 2013.

P. W. Barone, H. Yoon, R. Ortiz-garcía, J. Zhang, J. Ahn et al., Modulation of Single-Walled Carbon Nanotube Photoluminescence by Hydrogel Swelling, ACS Nano, vol.3, pp.3869-3877, 2009.

S. Lee, T. H. Kim, M. D. Lima, R. H. Baughman, and S. J. Kim, Biothermal Sensing of a Torsional Artificial Muscle, Nanoscale, vol.8, pp.3248-3253, 2016.

J. Lee, S. Ko, C. H. Kwon, M. D. Lima, R. H. Baughman et al., Carbon Nanotube Yarn-Based Glucose Sensing Artificial Muscle, vol.12, pp.2085-2091, 2016.

H. Hosseini, M. Kokabi, and S. M. Mousavi, Conductive Bacterial Cellulose/Multiwall Carbon Nanotubes Nanocomposite Aerogel as a Potentially Flexible Lightweight Strain Sensor, Carbohydr. Polym, vol.201, pp.228-235, 2018.

R. Andrews and M. C. Weisenberger, Carbon Nanotube Polymer Composites. Curr. Opin. Solid State Mater. Sci, vol.8, pp.31-37, 2004.

E. D. Yildirim, X. Yin, K. Nair, and W. Sun, Fabrication, Characterization and Biocompatibility of Single-Walled Carbon Nanotube-Reinforced Alginate Composite Scaffolds Manufactured Using Freeform Fabrication Technique, J. Biomed. Mater. Res. B Appl. Biomater, vol.87, pp.406-414, 2008.

S. R. Shin, H. Bae, J. M. Cha, J. Y. Mun, Y. Chen et al., Carbon Nanotube Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation, ACS Nano, vol.6, pp.362-372, 2012.

, Materials, vol.12, pp.624-643, 2019.

S. Ahadian, J. Ramón-azcón, M. Estili, X. Liang, S. Ostrovidov et al., Hybrid Hydrogels Containing Vertically Aligned Carbon Nanotubes with Anisotropic Electrical Conductivity for Muscle Myofiber Fabrication

S. Ahadian, S. Yamada, J. Ramón-azcón, M. Estili, X. Liang et al., Hybrid Hydrogel-Aligned Carbon Nanotube Scaffolds to Enhance Cardiac Differentiation of Embryoid Bodies, Acta Biomater, vol.31, pp.134-143, 2016.

H. Yu, H. Zhao, C. Huang, and Y. Du, Mechanically and Electrically Enhanced CNT-Collagen Hydrogels As Potential Scaffolds for Engineered Cardiac Constructs, ACS Biomater. Sci. Eng, vol.3, pp.3017-3021, 2017.

S. Pok, F. Vitale, S. L. Eichmann, O. M. Benavides, M. Pasquali et al., Biocompatible Carbon Nanotube-Chitosan Scaffold Matching the Electrical Conductivity of the Heart, ACS Nano, vol.8, pp.9822-9832, 2014.

L. G. Zhang, O. Im, J. Li, and M. Keidar, Biomimetic Three-Dimensional Nanocrystalline Hydroxyapatite and Magnetically Synthesized Single-Walled Carbon Nanotube Chitosan Nanocomposite for Bone Regeneration, Int. J. Nanomed, vol.7, pp.2087-2099, 2012.

G. Cancian, G. Tozzi, A. A. Hussain, A. De-mori, and M. Roldo, Carbon Nanotubes Play an Important Role in the Spatial Arrangement of Calcium Deposits in Hydrogels for Bone Regeneration, J. Mater. Sci. Mater. Med, vol.27, 2016.

X. Liu, J. C. Kim, A. L. Miller, B. E. Waletzki, and L. Lu, Electrically Conductive Nanocomposite Hydrogels Embedded with Functionalized Carbon Nanotubes for Spinal Cord Injury, New J. Chem, vol.42, pp.17671-17681, 2018.

M. Sheikholeslam, S. D. Wheeler, K. G. Duke, M. Marsden, M. Pritzker et al., Peptide and Peptide-Carbon Nanotube Hydrogels as Scaffolds for Tissue & 3D Tumor Engineering, Acta Biomater, vol.69, pp.107-119, 2018.

H. Li, J. He, Y. Zhao, G. Wang, and Q. Wei, The Effect of Carbon Nanotubes Added into Bullfrog Collagen Hydrogel on Gentamicin Sulphate Release: In Vitro, J. Inorg. Organomet. Polym. Mater, vol.21, pp.890-892, 2011.

G. Cirillo, O. Vittorio, S. Hampel, F. Iemma, P. Parchi et al., Quercetin Nanocomposite as Novel Anticancer Therapeutic: Improved Efficiency and Reduced Toxicity, Eur. J. Pharm. Sci, vol.49, pp.359-365, 2013.

U. G. Spizzirri, S. Hampel, G. Cirillo, F. P. Nicoletta, A. Hassan et al., Spherical Gelatin/CNTs Hybrid Microgels as Electro-Responsive Drug Delivery Systems, Int. J. Pharm, vol.448, pp.115-122, 2013.

M. Curcio, U. G. Spizzirri, G. Cirillo, O. Vittorio, N. Picci et al., On Demand Delivery of Ionic Drugs from Electro-Responsive CNT Hybrid Films, RSC Adv, vol.5, pp.44902-44911, 2015.

A. Servant, C. Bussy, K. Al-jamal, K. Kostarelos, and . Design, Engineering and Structural Integrity of Electro-Responsive Carbon Nanotube-Based Hydrogels for Pulsatile Drug Release, J. Mater. Chem. B, issue.1, p.4593, 2013.

A. Servant, L. Methven, R. P. Williams, K. Kostarelos, and . Electroresponsive, Polymer-Carbon Nanotube Hydrogel Hybrids for Pulsatile Drug Delivery In Vivo, Adv. Healthc. Mater, vol.2, pp.806-811, 2013.

X. Peng, Q. Zhuang, D. Peng, Q. Dong, L. Tan et al., Sustained Release of Naproxen in a New Kind Delivery System of Carbon Nanotubes Hydrogel, Iran. J. Pharm. Res, vol.12, pp.581-586, 2013.

Y. Ye, Y. Mao, H. Wang, and Z. Ren, Hybrid Structure of PH-Responsive Hydrogel and Carbon Nanotube Array with Superwettability, J. Mater. Chem, vol.22, pp.2449-2455, 2012.

C. Wei, X. Dong, Y. Zhang, J. Liang, A. Yang et al., Simultaneous Fluorescence Imaging Monitoring of the Programmed Release of Dual Drugs from a Hydrogel-Carbon Nanotube Delivery System, Sens. Actuators B Chem, vol.273, pp.264-275, 2018.

R. Hindumathi, M. Jagannatham, P. Haridoss, and C. P. Sharma, Novel Nano-Cocoon like Structures of Polyethylene Glycol-Multiwalled Carbon Nanotubes for Biomedical Applications, Nano-Struct. Nano-Objects, vol.13, pp.30-35, 2018.

, Materials, vol.12, 2019.

K. Kuche, R. Maheshwari, V. Tambe, K. Mak, H. Jogi et al., Carbon Nanotubes (CNTs) Based Advanced Dermal Therapeutics: Current Trends and Future Potential, Nanoscale, vol.10, pp.8911-8937, 2018.

J. S. Im, B. C. Bai, and Y. Lee, The Effect of Carbon Nanotubes on Drug Delivery in an Electro-Sensitive Transdermal Drug Delivery System, Biomaterials, vol.31, pp.1414-1419, 2010.

T. Bhunia, A. Giri, T. Nasim, D. Chattopadhyay, and A. Bandyopadhyay, A Transdermal Diltiazem Hydrochloride Delivery Device Using Multi-Walled Carbon Nanotube/Poly(Vinyl Alcohol) Composites. Carbon, vol.52, pp.305-315, 2013.

A. Giri, T. Bhunia, S. R. Mishra, L. Goswami, A. B. Panda et al., A Transdermal Device from 2-Hydroxyethyl Methacrylate Grafted Carboxymethyl Guar Gum-Multi-Walled Carbon Nanotube Composites

J. Guillet, E. Flahaut, and M. Golzio, A Hydrogel/Carbon-Nanotube Needle-Free Device for Electrostimulated Skin Drug Delivery, vol.18, pp.2715-2723, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01963158

F. Liang and E. Billups, Water-Soluble Single-Wall Carbon Nanotubes as a Platform Technology for Bomedical Applications, 2007.

J. P. Harmon and L. M. Clayton, Polymer/Carbon Nanotube Composites, Methods of Use and Methods of Synthesis Thereof, U.S. Patent, vol.7, p.13, 2010.

X. H. Sheng, D. Coates, L. Dong, F. G. Xia, and G. Q. Chung, Methods to Improve the Electrical Conductivity for Moulded Plastic Parts, 2014.

G. G. Wallace, J. Chen, A. I. Minett, and G. M. Clark, Nanostructured Composites. U.S. Patent, 2010.

L. Argenta, N. H. Levi, M. Morykwas, E. Walles, M. Mcgee et al., Methods and Compositions for Inhibiting Fibrosis, Scarring and/or Fbrotc Contractures, 2015.

F. K. Ko, S. Sukigara, M. Gandhi, and J. Ayutsede, Electrospun Carbon Nanotube Reinforced Silk Fibers, 2007.

J. P. Harmon, P. A. Muisener, L. M. Clayton, and J. Angelo, Carbon Nanotubeapolymer Composites Resistant to Ionzng Radation, U.S. Patent, vol.8, 2014.

G. Li, J. M. Liao, G. Q. Hu, N. Z. Ma, and P. J. Wu, Study of Carbon Nanotube Modified Biosensor for Monitoring Total Cholesterol in Blood, Biosens. Bioelectron, vol.20, pp.2140-2144, 2005.

E. Flahaut, L. Evariste, L. Gauthier, C. Larue, C. Line et al., Toxicité des nanotubes de carbone envers l'homme et l'environnement, vol.22, pp.8155-8156, 2018.

S. Y. Madani, A. Mandel, and A. M. Seifalian, A Concise Review of Carbon Nanotube's Toxicology, Nano Rev, 2013.

H. Cui, S. K. Vashist, K. Al-rubeaan, J. H. Luong, and F. Sheu, Interfacing Carbon Nanotubes with Living Mammalian Cells and Cytotoxicity Issues, Chem. Res. Toxicol, vol.23, pp.1131-1147, 2010.

H. Ali-boucetta and K. Kostarelos, Pharmacology of Carbon Nanotubes: Toxicokinetics, Excretion and Tissue Accumulation, Adv. Drug Deliv. Rev, vol.65, pp.2111-2119, 2013.

D. Georgin, B. Czarny, M. Botquin, M. Mayne-l'hermite, M. Pinault et al., Preparation of 14 C-Labeled Multiwalled Carbon Nanotubes for Biodistribution Investigations, J. Am. Chem. Soc, vol.131, pp.14658-14659, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01930685

J. T. Wang, C. Fabbro, E. Venturelli, C. Ménard-moyon, O. Chaloin et al., The Relationship between the Diameter of Chemically-Functionalized Multi-Walled Carbon Nanotubes and Their Organ Biodistribution Profiles in Vivo, Biomaterials, vol.35, pp.9517-9528, 2014.

B. Czarny, D. Georgin, F. Berthon, G. Plastow, M. Pinault et al., Dive, V. Carbon Nanotube Translocation to Distant Organs after Pulmonary Exposure: Insights from in Situ 14 C-Radiolabeling and Tissue Radioimaging, ACS Nano, vol.8, pp.5715-5724, 2014.

R. Alshehri, A. M. Ilyas, A. Hasan, A. Arnaout, F. Ahmed et al., Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms and Remedies of Toxicity: Miniperspective, J. Med. Chem, vol.59, pp.8149-8167, 2016.

, Materials, vol.12, pp.624-645, 2019.

É. Meunier, A. Coste, D. Olagnier, H. Auhtier, L. Lefèvre et al., Double-Walled Carbon Nanotubes Trigger IL-1? Release in Human Monocytes through Nlrp3 Inflammasome Activation, Nanomed. Nanotechnol. Biol. Med, vol.8, pp.987-995, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00857489

D. Crouzier, S. Follot, E. Gentilhomme, E. Flahaut, R. Arnaud et al., Carbon Nanotubes Induce Inflammation but Decrease the Production of Reactive Oxygen Species in Lung, Toxicology, vol.272, pp.39-45, 2010.

K. Kostarelos, The Long and Short of Carbon Nanotube Toxicity, Nat. Biotechnol, vol.26, pp.774-776, 2008.

M. Pumera, Nanotoxicology: The Molecular Science Point of View, Chem. Asian J, vol.6, pp.340-348, 2011.

G. Papanikolaou and K. Pantopoulos, Iron Metabolism and Toxicity, Toxicol. Appl. Pharmacol, vol.202, pp.199-211, 2005.

B. L. Allen, G. P. Kotchey, Y. Chen, N. V. Yanamala, J. Klein-seetharaman et al., Mechanistic Investigations of Horseradish Peroxidase-Catalyzed Degradation of Single-Walled Carbon Nanotubes, J. Am. Chem. Soc, vol.131, pp.17194-17205, 2009.

A. Mottier, F. Mouchet, C. Laplanche, S. Cadarsi, L. Lagier et al., Surface Area of Carbon Nanoparticles: A Dose Metric for a More Realistic Ecotoxicological Assessment, Nano Lett, vol.16, pp.3514-3518, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346283

R. Bellingeri, F. Alustiza, N. Picco, D. Acevedo, M. A. Molina et al., In Vitro Toxicity Evaluation of Hydrogel-Carbon Nanotubes Composites on Intestinal Cells, J. Appl. Polym. Sci, vol.132, p.41370, 2015.