, Digital geometry tools and algorithms library

C. L. Bajaj and V. Pascucci, Splitting a complex of convex polytopes in any dimension, Proceedings of the Twelfth Annual Symposium on Computational Geometry, ACM, pp.88-97, 1996.

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, The quickhull algorithm for convex hulls, ACM Trans. Math. Softw, vol.22, pp.469-483, 1996.

F. P. Boca, C. Cobeli, and A. Zaharescu, Distribution of lattice points visible from the origin, Communications in Mathematical Physics, vol.213, pp.433-470, 2000.

G. Borgefors, Distance transformations in digital images, Computer Vision, Graphics, and Image Processing, vol.34, pp.344-371, 1986.

G. Borgefors and I. Nyström, Efficient shape representation by minimizing the set of centres of maximal discs/sphere, Pattern Recognition Letters, vol.18, pp.465-472, 1997.

H. Breu, J. Gil, D. Kirkpatrick, and M. Werman, Linear time euclidean distance transform algorithms, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.17, pp.529-533, 1995.

B. Chazelle, An Optimal Convex Hull Algorithm in Any Fixed Dimension, Discrete & Computational Geometry, vol.10, pp.377-409, 1993.

D. Coeurjolly, Applications of Discrete Geometry and Mathematical Morphology, Analysis of Digital Objects Using Distance Transformation: Performance Issues and Extensions, vol.7346, 2012.

D. Coeurjolly, 2D subquadratic separable distance transformation for path-based norms, in: Discrete Geometry for Computer Imagery, LNCS, vol.8668, pp.75-87, 2014.

D. Coeurjolly and A. Montanvert, Optimal separable algorithms to compute the reverse euclidean distance transformation and discrete medial axis in arbitrary dimension, IEEE Transactions on PAMI, vol.29, pp.437-448, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00148621

M. Couprie, D. Coeurjolly, and R. Zrour, Discrete bisector function and Euclidean skeleton in 2D and 3D, Image and Vision Computing, vol.25, pp.1543-1556, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00180616

P. E. Danielsson, Euclidean distance mapping, Computer Graphics and Image Processing, vol.14, pp.227-248, 1980.

M. De-berg, M. Van-kreveld, M. Overmars, and O. Schwarzkopf, Computational Geometry, 2000.

C. Fouard and G. Malandain, 3-D chamfer distances and norms in anisotropic grids, Image and Vision Computing, vol.23, pp.143-158, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00308886

W. H. Hesselink, A linear-time algorithm for euclidean feature transform sets, Information Processing Letters, vol.102, pp.181-186, 2007.

T. Hirata, A unified linear-time algorithm for computing distance maps, Information Processing Letters, vol.58, pp.129-133, 1996.

R. Klette and A. Rosenfeld, Digital Geometry: Geometric Methods for Digital Picture Analysis. Series in Computer Graphics and Geometric Modelin, 2004.

J. Marklof, Fine-Scale Statistics for the Multidimensional Farey Sequence, pp.49-57, 2013.

J. Marklof and A. Strömbergsson, Visibility and directions in quasicrystals, International Mathematics Research Notices, vol.15, pp.6588-6617, 2015.

J. Matousek and O. Schwarzkopf, On ray shooting in convex polytopes, Discrete & Computational Geometry, vol.10, pp.215-232, 1993.

C. R. Maurer, R. Qi, and V. Raghavan, A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.25, pp.265-270, 2003.

A. Meijster, J. B. Roerdink, and W. H. Hesselink, A general algorithm for computing distance transforms in linear time, Mathematical Morphology and its Applications to Image and Signal Processing, pp.331-340, 2000.

J. Mukherjee, P. P. Das, M. A. Kumarb, and B. N. Chatterjib, On approximating euclidean metrics by digital distances in 2D and 3D, Pattern Recognition Letters, vol.21, pp.573-582, 2000.

N. Normand and P. Évenou, Medial axis lookup table and test neighborhood computation for 3d chamfer norms, Pattern Recognition, vol.42, pp.2288-2296, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00392421

N. Normand, R. Strand, P. ;. Évenou, . Dgci, and . Springer, Digital distances and integer sequences, LNCS, vol.7749, pp.169-179, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01155038

N. Normand, R. Strand, P. Évenou, and A. Arlicot, Minimal-delay distance transform for neighborhoodsequence distances in 2d and 3d, Computer Vision and Image Understanding, vol.117, pp.409-417, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00765695

N. Normand, R. Strand, P. Évenou, and A. Arlicot, A streaming distance transform algorithm for neighborhood-sequence distances, IPOL Journal, vol.4, pp.196-203, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01155012

I. Ragnemalm, The Euclidean Distance Transform, 1993.

E. Remy and E. Thiel, Medial axis for chamfer distances: computing look-up tables and neighbourhoods in 2D or 3D, Pattern Recognition Letters, vol.23, pp.649-661, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01494689

A. Rosenfeld and J. Pfaltz, Distance functions on digital pictures, Pattern Recognition, vol.1, pp.33-61, 1968.

A. Rosenfeld and J. L. Pfaltz, Sequential operations in digital picture processing, Journal of the ACM, vol.13, pp.471-494, 1966.

P. K. Saha, G. Borgefors, and G. S. Di-baja, A survey on skeletonization algorithms and their applications, Pattern Recognition Letters, vol.76, pp.3-12, 2016.

R. Strand, Distance Functions and Image Processing on Point-Lattices With Focus on the 3D Face-and Body-centered Cubic Grids, 2008.

E. Thiel, Géométrie des distances de chanfrein, 2001.

B. J. Verwer, P. W. Verbeek, and S. T. Dekker, An efficient uniform cost algorithm applied to distance transforms, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.11, pp.425-429, 1989.

G. M. Ziegler, Lectures on polytopes, vol.152, 2012.