Optimal Separable Algorithms to Compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension

David Coeurjolly 1 Annick Montanvert 2
1 M2DisCo - Geometry Processing and Constrained Optimization
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
2 GIPSA-GPIG - GPIG
GIPSA-DIS - Département Images et Signal
Abstract : In binary images, the distance transformation (DT) and the geometrical skeleton extraction are classic tools for shape analysis. In this paper, we present time optimal algorithms to solve the reverse Euclidean distance transformation and the reversible medial axis extraction problems for $d$-dimensional images. We also present a $d$-dimensional medial axis filtering process that allows us to control the quality of the reconstructed shape.
Document type :
Journal articles
Complete list of metadatas

Cited literature [45 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00148621
Contributor : David Coeurjolly <>
Submitted on : Wednesday, May 23, 2007 - 8:13:36 AM
Last modification on : Thursday, November 1, 2018 - 1:19:03 AM
Long-term archiving on : Thursday, April 8, 2010 - 5:30:22 PM

File

Coeurjolly-2007_liris2441.pdf
Publisher files allowed on an open archive

Identifiers

Citation

David Coeurjolly, Annick Montanvert. Optimal Separable Algorithms to Compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension. IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2007, 29 (3), pp.437-448. ⟨10.1109/TPAMI.2007.54⟩. ⟨hal-00148621⟩

Share

Metrics

Record views

444

Files downloads

282