A. Agresti, Analysis of ordinal categorical data, vol.656, 2010.

P. S. Bhatia, S. Iovleff, and G. Govaert, blockcluster: An r package for model-based co-clustering, Journal of Statistical Software, issue.i09, p.76, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01093554

C. Biernacki, G. Celeux, G. , and G. , Choosing starting values for the em algorithm for getting the highest likelihood in multivariate gaussian mixture models, Computational Statistics & Data Analysis, vol.41, issue.3, pp.561-575, 2003.

C. Biernacki and J. Jacques, Model-based clustering of multivariate ordinal data relying on a stochastic binary search algorithm, Statistics and Computing, vol.26, issue.5, pp.929-943, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01052447

C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), 2006.

. Springer-verlag,

C. Bouveyron, L. Bozzi, J. Jacques, J. , and F. , The functional latent block model for the co-clustering of electricity consumption curves, Journal of the Royal Statistical Society: Series C (Applied Statistics), vol.67, issue.4, pp.897-915, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01533438

G. Celeux and G. Govaert, A classification em algorithm for clustering and two stochastic versions, Computational Statistics Quaterly, vol.2, issue.1, pp.73-82, 1991.
URL : https://hal.archives-ouvertes.fr/inria-00075196

E. Côme and P. Latouche, Model selection and clustering in stochastic block models based on the exact integrated complete data likelihood, Statistical Modelling, vol.15, issue.6, pp.564-589, 2015.

D. Elia, A. Piccolo, and D. , A mixture model for preferences data analysis, Computational Statistics & Data Analysis, vol.49, issue.3, pp.917-934, 2005.

A. P. Dempster, N. M. Laird, R. , and D. B. , Maximum likelihood from incomplete data via the em algorithm, Journal of the royal statistical society. Series B (methodological), pp.1-38, 1977.

W. Dillon, N. C. Firtle, and T. C. Madden, Marketing research in a marketing environment, vol.IRWIN, 1990.

D. Fernández, R. Arnold, and S. Pledger, Mixture-based clustering for the ordered stereotype model, Computational Statistics & Data Analysis, vol.93, pp.46-75, 2016.

Z. Gilula, R. Mcculloch, Y. Ritov, and O. Urminsky, A study into mechanisms of attitudinal scale conversion: A stochastic ordering approach, 2018.

M. Giordan and G. Diana, A clustering method for categorical ordinal data, Communications in Statistics?Theory and Methods, vol.40, issue.7, pp.1315-1334, 2011.

I. C. Gormley and T. B. Murphy, A mixture of experts latent position cluster model for social network data, Statistical methodology, vol.7, issue.3, pp.385-405, 2010.

C. Gouget, Utilisation des modèles de mélange pour la classification automatique de données ordinales, 2006.

G. Govaert and M. Nadif, Block clustering with bernoulli mixture models: Comparison of different approaches, Computational Statistics & Data Analysis, vol.52, issue.6, pp.3233-3245, 2008.

G. Govaert and M. Nadif, Latent block model for contingency table, Communications in Statistics?Theory and Methods, vol.39, pp.416-425, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00447792

J. Jacques and C. Biernacki, Model-based co-clustering for ordinal data, Computational Statistics & Data Analysis, vol.123, pp.101-115, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01383927

F. Jollois and M. Nadif, Classification de données ordinales: modèles et algorithmes, 41èmes Journées de Statistique, 2009.

C. Keribin, V. Brault, G. Celeux, G. , and G. , Estimation and selection for the latent block model on categorical data, Statistics and Computing, vol.25, issue.6, pp.1201-1216, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00802764

C. Keribin, V. Brault, G. Celeux, and G. Govaert, Model selection for the binary latent block model, Proceedings of COMPSTAT, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00924210

C. Keribin, G. Celeux, and R. Valérie, The latent block model: a useful model for high dimensional data, ISI 2017-61st world statistics congress, pp.1-6, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01658589

R. J. Little and D. B. Rubin, Statistical analysis with missing data, vol.333, 2014.

A. Lomet, Sélection de modèle pour la classification croisée de données continues, 2012.

D. Mcparland and I. C. Gormley, Model based clustering for mixed data: clustmd. Advances in Data Analysis and Classification, vol.10, pp.155-169, 2016.

J. Podani, Braun-blanquet's legacy and data analysis in vegetation science, Journal of Vegetation Science, vol.17, issue.1, pp.113-117, 2006.

M. Ranalli and R. Rocci, Mixture models for ordinal data: a pairwise likelihood approach, Statistics and Computing, vol.26, issue.1-2, pp.529-547, 2016.

W. M. Rand, Objective criteria for the evaluation of clustering methods, Journal of the American Statistical association, vol.66, issue.336, pp.846-850, 1971.

G. Schwarz, Estimating the dimension of a model. The annals of statistics, vol.6, pp.461-464, 1978.

L. Scrucca, Genetic algorithms for subset selection in model-based clustering, Unsupervised Learning Algorithms, pp.55-70, 2016.

J. Wyse, N. Friel, L. , and P. , Inferring structure in bipartite networks using the latent blockmodel and exact icl, Network Science, vol.5, issue.1, pp.45-69, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01519780