The Functional Latent Block Model for the Co-Clustering of Electricity Consumption Curves

Abstract : As a consequence of the recent policies for smart meter development, electricity operators are nowadays able to collect data on electricity consumption widely and with a high frequency. This is in particular the case in France where EDF will be able soon to remotely record the consumption of its 27 millions clients every 30 minutes. We propose in this work a new co-clustering methodology, based on the functional latent block model (funLBM), which allows to build "summaries" of these large consumption data through co-clustering. The funLBM model extends the usual latent block model to the functional case by assuming that the curves of one block live in a low-dimensional functional subspace. Thus, funLBM is able to model and cluster large data set with high-frequency curves. An SEM-Gibbs algorithm is proposed for model inference. An ICL criterion is also derived to address the problem of choosing the number of row and column groups. Numerical experiments on simulated and original Linky data show the usefulness of the proposed methodology.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01533438
Contributeur : Charles Bouveyron <>
Soumis le : mardi 6 juin 2017 - 14:44:42
Dernière modification le : lundi 6 novembre 2017 - 16:28:02
Document(s) archivé(s) le : jeudi 7 septembre 2017 - 13:01:17

Fichier

article-funLBM.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01533438, version 1

Collections

Citation

Charles Bouveyron, Laurent Bozzi, Julien Jacques, François-Xavier Jollois. The Functional Latent Block Model for the Co-Clustering of Electricity Consumption Curves. 2017. 〈hal-01533438〉

Partager

Métriques

Consultations de la notice

229

Téléchargements de fichiers

96