A. Jorio, M. S. Dresselhaus, and G. Dresselhaus, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, 2008.

J. P. Lu, Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett, vol.79, pp.1297-1300, 1997.

A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. Treacy, Young's modulus of single-walled nanotubes, Phys. Rev. B, vol.58, pp.14013-14019, 1998.

A. Sood, P. Teresdesai, D. Muthu, R. Sen, A. Govindaraj et al., Pressure behaviour of single wall carbon nanotube bundles and fullerenes: a Raman study, 2e8. International Conference on Solid State Spectroscopy-(ICSSS), vol.215, pp.1521-3951, 1999.

U. Venkateswaran, Squeezing carbon nanotubes, 11th International Conference on High-Pressure Semiconductor Physics (HPSP-11), vol.241, pp.3345-3351, 2004.

J. A. Elliott, J. K. Sandler, A. H. Windle, R. J. Young, and M. S. Shaffer, Collapse of single-wall carbon nanotubes is diameter dependent, Phys. Rev. Lett, vol.92, p.95501, 2004.

C. Caillier, A. Ayari, V. Gouttenoire, J. Benoit, V. Jourdain et al., An individual carbon nanotube transistor tuned by high pressure, Adv. Funct. Mater, vol.20, issue.19, pp.3330-3335, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00534234

M. Popov, M. Kyotani, R. J. Nemanich, and Y. Koga, Superhard phase composed of single-wall carbon nanotubes, Phys. Rev. B, vol.65, p.33408, 2002.

V. Perebeinos and J. Tersoff, Carbon nanotube deformation and collapse under metal contacts, Nano Lett, vol.14, issue.8, p.25014612, 2014.

M. , M emoire sur un nouveau cas int egrable du probleme de l' elastique et l'une de ses applications, J. de Math. Pures Appl, vol.3, pp.5-42, 1884.

A. P. Carman, Resistance of tubes to collapse, Phys. Rev. XXI, pp.381-387, 1905.

G. F. Carrier, On the buckling of elastic rings, J. Math. Phys, vol.26

T. F. Cerqueira, S. Botti, A. San-miguel, and M. A. Marques, Density-functional tightbinding study of the collapse of carbon nanotubes under hydrostatic pressure, Carbon, vol.69, issue.0, pp.355-360, 2014.

A. C. Torres-dias, S. Cambr-e, W. Wenseleers, D. Machon, and A. San-miguel, Chirality-dependent mechanical response of empty and water-filled singlewall carbon nanotubes at high pressure, Carbon, pp.442-541, 2015.

C. Caillier, D. Machon, A. San-miguel, R. Arenal, G. Montagnac et al., Probing high-pressure properties of singlewall carbon nanotubes through fullerene encapsulation, Phys. Rev. B, vol.77, issue.12, 2008.

L. Alvarez, J. Bantignies, R. L. Parc, R. Aznar, J. Sauvajol et al., High-pressure behavior of polyiodides confined into single-walled carbon nanotubes: a raman study, Phys. Rev. B, vol.82, p.205403, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00534900

A. L. Aguiar, E. B. Barros, R. B. Capaz, A. G. Souza-filho, P. T. Freire et al., Pressure-induced collapse in double-walled carbon nanotubes: chemical and mechanical screening effects, J. Phys. Chem. C, vol.115, issue.13, 2011.

B. Anis, K. Haubner, F. B?-orrnert, L. Dunsch, M. H. Rümmeli et al., Stabilization of carbon nanotubes by filling with inner tubes: an optical spectroscopy study on double-walled carbon nanotubes under hydrostatic pressure, Phys. Rev. B, vol.86, p.155454, 2012.

B. Anis, F. Boerrnert, M. H. Ruemmeli, and C. A. Kuntscher, High-pressure optical microspectroscopy study on single-walled carbon nanotubes encapsulating C60, J. Phys. Chem. C, vol.117, issue.42, pp.21995-22001, 2013.

W. Cui, T. F. Cerqueira, S. Botti, M. A. Marques, and A. San-miguel, Nanostructured water and carbon dioxide inside collapsing carbon nanotubes at high pressure, Phys. Chem. Chem. Phys, 2016.

A. J. Ghandour, I. F. Crowe, J. E. Proctor, Y. W. Sun, M. P. Halsall et al., Pressure coefficients of raman modes of carbon nanotubes resolved by chirality: environmental effect on graphene sheet, Phys. Rev. B, vol.87, p.85416, 2013.

A. Merlen, P. Toulemonde, N. Bendiab, A. Aouizerat, J. Sauvajol et al., Raman spectroscopy of open-ended single wall carbon nanotubes under pressure: effect of the pressure transmitting medium, Phys. Status Solidi B, vol.243, issue.3, pp.690-699, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00232792

P. Puech, E. Flahaut, A. Sapelkin, H. Hubel, D. J. Dunstan et al., Nanoscale pressure effects in individual double-wall carbon nanotubes, Phys. Rev. B, vol.73, p.233408, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01481822

F. Balima, S. L. Floch, C. Adessi, T. F. Cerqueira, N. Blanchard et al., Radial collapse of carbon nanotubes for conductivity optimized polymer composites, Carbon, vol.106, pp.64-73, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01984822

S. Lebedkin, K. Arnold, O. Kiowski, F. Hennrich, and M. M. Kappes, Raman study of individually dispersed single-walled carbon nanotubes under pressure, Phys. Rev. B, vol.73, p.94109, 2006.

U. D. Venkateswaran, A. M. Rao, E. Richter, M. Menon, A. Rinzler et al., Probing the single-wall carbon nanotube bundle: raman scattering under high pressure, Phys. Rev. B, vol.59, pp.10928-10934, 1999.

A. Merlen, N. Bendiab, P. Toulemonde, A. Aouizerat, A. Miguel et al., Resonant raman spectroscopy of single-wall carbon nanotubes under pressure, Phys. Rev. B, vol.72, p.35409, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00232786

D. J. Dunstan and A. J. Ghandour, High-pressure studies of carbon nanotubes, 47th Meeting of the European-High-PressureResearch-Group (EHPRG 47), vol.29, pp.548-553, 2009.

A. J. Ghandour, D. J. Dunstan, A. Sapelkin, I. Hernandez, M. P. Halsall et al., Effect of water on resonant raman spectroscopy of closed single-walled carbon nanotubes, Phys. Status Solidi B, vol.248, issue.11, pp.2548-2551, 2011.

A. C. Torres-dias, T. F. Cerqueira, W. Cui, M. A. Marques, S. Botti et al., From mesoscale to nanoscale mechanics in single-wall carbon nanotubes, Carbon, vol.123, pp.145-150, 2017.

J. Arvanitidis, D. Christofilos, K. Papagelis, K. S. Andrikopoulos, T. Takenobu et al., Pressure screening in the interior of primary shells in double-wall carbon nanotubes, Phys. Rev. B, vol.71, p.125404, 2005.

P. Puech, H. Hubel, D. J. Dunstan, R. R. Bacsa, C. Laurent et al., Discontinuous tangential stress in double wall carbon nanotubes, Phys. Rev. Lett, vol.93, p.95506, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00934740

X. Ye, D. Y. Sun, and X. G. Gong, Pressure-induced structural transition of doublewalled carbon nanotubes, Phys. Rev. B, vol.72, p.35454, 2005.

X. Yang, G. Wu, and J. Dong, Structural transformations of double-walled carbon nanotube bundle under hydrostatic pressure, Appl. Phys. Lett, vol.89, issue.11, 2006.

P. Puech, H. Hubel, D. J. Dunstan, A. Bassil, R. Bacsa et al., Light scattering of double wall carbon nanotubes under hydrostatic pressure: pressure effects on the internal and external tubes, Phys. Status Solidi B, vol.241, issue.14, pp.3360-3366, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01812639

E. Del-corro, J. Gonz-alez, M. Taravillo, E. Flahaut, and V. G. Baonza, Raman spectra of double-wall carbon nanotubes under extreme uniaxial stress, Nano Lett, vol.8, issue.8, p.18593203, 2008.

M. Mases, V. V. Milyavskiy, J. Waldbock, M. Dossot, X. Devaux et al., The effect of shock wave compression on double wall carbon nanotubes, Phys. Status Solidi B, issue.12, p.249

A. L. Aguiar, R. B. Capaz, A. G. Souza-filho, and A. San-miguel, Structural and phonon properties of bundled single-and double-wall carbon nanotubes under pressure, J. Phys. Chem. C, vol.116, issue.42, pp.22637-22645, 2012.

S. You, M. Mases, I. Dobryden, A. A. Green, M. C. Hersam et al., Probing structural stability of double-walled carbon nanotubes at high nonhydrostatic pressure by raman spectroscopy, High. Press. Res, vol.31, issue.1, pp.186-190, 2011.

D. Porezag, T. Frauenheim, T. K?-ohler, G. Seifert, and R. Kaschner, Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon, Phys. Rev. B, vol.51, pp.12947-12957, 1995.

G. Seifert, D. Porezag, and T. Frauenheim, Calculations of molecules, clusters, and solids with a simplified lcao-dft-lda scheme, Int. J. Quantum Chem, vol.58, issue.2, pp.185-192, 1996.

J. Frenzel, A. F. Oliveira, N. Jardillier, T. Heine, and G. Seifert, Semi-relativistic, Selfconsistent Charge Slater-koster Tables for Density-functional Based Tightbinding (Dftb) for Materials Science Simulations, 2004.

G. Zheng, S. Irle, and K. Morokuma, Performance of the dftb method in comparison to dft and semiempirical methods for geometries and energies of c20-c60 fullerene isomers, Chem. Phys. Lett, vol.412, issue.1e3, pp.210-216, 2005.

S. Malola, H. H?-akkinen, and P. Koskinen, Raman spectra of single-walled carbon nanotubes with vacancies, Phys. Rev. B, vol.77, p.155412, 2008.

S. Botti, M. Amsler, J. A. Flores-livas, P. Ceria, S. Goedecker et al., Carbon structures and defect planes in diamond at high pressure, Phys. Rev. B, vol.88, issue.1, p.14102, 2013.

Z. Peralta-inga, S. Boyd, J. S. Murray, C. J. O'connor, and P. Politzer, Density functional tight-binding studies of carbon nanotube structures, Struct. Chem, vol.14, issue.5, pp.431-443, 2003.

E. Flahaut, C. Laurent, and A. Peigney, Catalytic {CVD} synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation, Carbon, vol.43, issue.2, pp.375-383, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00474904

H. Mao, J. Xu, and P. Bell, Calibration of the ruby pressure gauge to 800-kbar under quasi-hydrostatic conditions, J. Geophys. Res, vol.91, issue.B5, pp.4673-4676, 1986.

J. Zang, A. Treibergs, Y. Han, and F. Liu, Geometric constant defining shape transitions of carbon nanotubes under pressure, Phys. Rev. Lett, vol.92, p.105501, 2004.

S. Rols, I. N. Goncharenko, R. Almairac, J. L. Sauvajol, and I. Mirebeau, Polygonization of single-wall carbon nanotube bundles under high pressure, Phys. Rev. B, vol.64, p.153401, 2001.

M. J. Peters, L. E. Mcneil, J. P. Lu, and D. Kahn, Structural phase transition in carbon nanotube bundles under pressure, Phys. Rev. B, vol.61, 2000.

A. J. Ghandour, D. J. Dunstan, A. Sapelkin, J. E. Proctor, and M. P. Halsall, High-pressure raman response of single-walled carbon nanotubes: effect of the excitation laser energy, Phys. Rev. B, vol.78, 2008.

R. S. Alencar, A. L. Aguiar, A. R. Paschoal, P. T. Freire, Y. A. Kim et al., Souza Filho, Pressure-induced selectivity for probing inner tubes in double-and triple-walled carbon nanotubes: a resonance raman study, J. Phys. Chem. C, vol.118, issue.15, pp.8153-8158, 2014.

M. Yao, Z. Wang, B. Liu, Y. Zou, S. Yu et al., Raman signature to identify the structural transition of single-wall carbon nanotubes under high pressure, Phys. Rev. B, vol.78, issue.20, p.205411, 2008.

S. Cambr-e, B. Schoeters, S. Luyckx, E. Goovaerts, and W. Wenseleers, Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5,3), Phys. Rev. Lett, vol.104, issue.20, p.207401, 2010.

P. Djondjorov, V. Vassilev, and I. Mladenov, Analytic description and explicit parametrisation of the equilibrium shapes of elastic rings and tubes under uniform hydrostatic pressure, Int. J. Mech. Sci, vol.53, pp.355-364, 2011.

V. Vassilev, P. Djondjorov, and I. Mladenov, Comment on "shape transition of unstrained flattest single-walled carbon nanotubes under pressure, J. Appl. Phys, vol.115, p.44512, 2014.