A. Lada, N. Adamic, and . Glance, The political blogosphere and the 2004 us election: divided they blog, Proceedings of the 3rd international workshop on Link discovery, pp.36-43, 2005.

O. Ajanki, L. Erdos, and T. Krüger, Quadratic vector equations on complex upper half-plane, 2015.
DOI : 10.1002/cpa.21639

URL : http://arxiv.org/pdf/1512.03703

D. Zhi-, J. W. Bai, and . Silverstein, No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices, Annals of probability, pp.316-345, 1998.

J. Baik and . Jack-w-silverstein, Eigenvalues of large sample covariance matrices of spiked population models, Journal of Multivariate Analysis, vol.97, issue.6, pp.1382-1408, 2006.

J. Baik, G. Ben-arous, and S. Péché, Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices, Annals of Probability, pp.1643-1697, 2005.

F. Benaych, -. , and R. R. Nadakuditi, The singular values and vectors of low rank perturbations of large rectangular random matrices, Journal of Multivariate Analysis, vol.111, pp.120-135, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00575203

P. Billingsley, Probability and measure. wiley series in probability and mathematical statistics, 1995.

S. Boucheron, G. Lugosi, and P. Massart, Concentration inequalities: A nonasymptotic theory of independence, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00794821

F. Chapon, R. Couillet, W. Hachem, and X. Mestre, The outliers among the singular values of large rectangular random matrices with additive fixed rank deformation, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00713811

Y. Chen, X. Li, and J. Xu, Convexified modularity maximization for degree-corrected stochastic block models, 2015.
DOI : 10.1214/17-aos1595

URL : http://arxiv.org/pdf/1512.08425

R. K. Fan and . Chung, Spectral graph theory, vol.92, 1997.

A. Coja-oghlan and A. Lanka, Finding planted partitions in random graphs with general degree distributions, SIAM Journal on Discrete Mathematics, vol.23, issue.4, pp.1682-1714, 2009.
DOI : 10.1137/070699354

URL : http://wrap.warwick.ac.uk/43264/1/WRAP_Coja-Oghlan_fppac.pdf

R. Couillet and F. Benaych-georges, Kernel spectral clustering of large dimensional data, Electronic Journal of Statistics, vol.10, issue.1, pp.1393-1454, 2016.
DOI : 10.1214/16-ejs1144

URL : https://hal.archives-ouvertes.fr/hal-01215343

A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Inference and phase transitions in the detection of modules in sparse networks, Physical Review Letters, vol.107, issue.6, p.65701, 2011.

J. Duch and A. Arenas, Community detection in complex networks using extremal optimization, Physical review E, vol.72, issue.2, p.27104, 2005.
DOI : 10.1103/physreve.72.027104

URL : http://arxiv.org/pdf/cond-mat/0501368

S. Fortunato, Community detection in graphs, Physics Reports, vol.486, issue.3, pp.75-174, 2010.
DOI : 10.1016/j.physrep.2009.11.002

URL : http://arxiv.org/pdf/0906.0612v1.pdf

C. Gao, Z. Ma, Y. Anderson, H. Zhang, and . Zhou, Community detection in degree-corrected block models, 2016.
DOI : 10.1214/17-aos1615

URL : http://arxiv.org/pdf/1607.06993

R. Guimera, M. Sales-pardo, and L. Amaral, Modularity from fluctuations in random graphs and complex networks, Physical Review E, vol.70, issue.2, p.25101, 2004.

L. Gulikers, M. Lelarge, and L. Massoulié, A spectral method for community detection in moderately-sparse degree-corrected stochastic block models, 2015.
DOI : 10.1017/apr.2017.18

URL : https://hal.archives-ouvertes.fr/hal-01622731

W. Hachem, P. Loubaton, and J. Najim, Deterministic equivalents for certain functionals of large random matrices, The Annals of Applied Probability, vol.17, issue.3, pp.875-930, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00621793

W. Hachem, P. Loubaton, X. Mestre, J. Najim, and P. Vallet, A subspace estimator for fixed rank perturbations of large random matrices, Journal of Multivariate Analysis, vol.114, pp.427-447, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00598826

A. John, . Hartigan, . Manchek, and . Wong, Algorithm as 136: A k-means clustering algorithm, Journal of the Royal Statistical Society. Series C (Applied Statistics), vol.28, issue.1, pp.100-108, 1979.

B. Matthew and . Hastings, Community detection as an inference problem, Physical Review E, vol.74, issue.3, p.35102, 2006.

J. Jin, Fast community detection by score, The Annals of Statistics, vol.43, issue.1, pp.57-89, 2015.
DOI : 10.1214/14-aos1265

URL : https://doi.org/10.1214/14-aos1265

B. Karrer, . Mark, and . Newman, Stochastic blockmodels and community structure in networks, Physical Review E, vol.83, issue.1, p.16107, 2011.
DOI : 10.1103/physreve.83.016107

URL : https://link.aps.org/accepted/10.1103/PhysRevE.83.016107

F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly et al., Spectral redemption in clustering sparse networks, Proceedings of the National Academy of Sciences, vol.110, issue.52, pp.20935-20940, 2013.
DOI : 10.1073/pnas.1312486110

URL : https://hal.archives-ouvertes.fr/cea-01223434

J. Lei and A. Rinaldo, Consistency of spectral clustering in stochastic block models, The Annals of Statistics, vol.43, issue.1, pp.215-237, 2015.

V. Lyzinski, M. Daniel-l-sussman, A. Tang, C. E. Athreya, and . Priebe, Perfect clustering for stochastic blockmodel graphs via adjacency spectral embedding, Electronic Journal of Statistics, vol.8, issue.2, pp.2905-2922, 2014.
DOI : 10.1214/14-ejs978

URL : https://doi.org/10.1214/14-ejs978

R. R. Nadakuditi, . Mark, and . Newman, Graph spectra and the detectability of community structure in networks, Physical review letters, vol.108, issue.18, p.188701, 2012.

E. J. Mark and . Newman, Fast algorithm for detecting community structure in networks, Physical review E, vol.69, issue.6, p.66133, 2004.

E. J. Mark and . Newman, Finding community structure in networks using the eigenvectors of matrices, Physical review E, vol.74, issue.3, p.36104, 2006.

E. J. Mark and . Newman, Modularity and community structure in networks, Proceedings of the National Academy of Sciences, vol.103, issue.23, pp.8577-8582, 2006.

E. J. Mark, E. A. Newman, and . Leicht, MEJ Newman. Spectral community detection in sparse networks, Proceedings of the National Academy of Sciences, vol.104, issue.23, pp.9564-9569, 2007.

M. Newman, Community detection in networks: Modularity optimization and maximum likelihood are equivalent, 2016.

Y. Andrew, . Ng, Y. Michael-i-jordan, and . Weiss, On spectral clustering: Analysis and an algorithm, Advances in neural information processing systems, vol.2, pp.849-856, 2002.

T. Shu-kay-ng, G. J. Krishnan, and . Mclachlan, The em algorithm, Handbook of computational statistics, pp.139-172, 2012.

L. Andreevich-pastur, M. Shcherbina, and M. Shcherbina, Eigenvalue distribution of large random matrices, vol.171, 2011.

T. Qin and K. Rohe, Regularized spectral clustering under the degree-corrected stochastic blockmodel, Advances in Neural Information Processing Systems, pp.3120-3128, 2013.

A. Saade, F. Krzakala, and L. Zdeborová, Spectral clustering of graphs with the bethe hessian, Advances in Neural Information Processing Systems, pp.406-414, 2014.
URL : https://hal.archives-ouvertes.fr/cea-01140852

W. Jack, Z. D. Silverstein, and . Bai, On the empirical distribution of eigenvalues of a class of large dimensional random matrices, Journal of Multivariate analysis, vol.54, issue.2, pp.175-192, 1995.

A. Hafiz-tiomoko and R. Couillet, Performance analysis of spectral community detection in realistic graph models, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP16), 2016.

A. Hafiz-tiomoko and R. Couillet, Improved spectral community detection algorithm in large dense graphs, 2017.

Y. Zhao, E. Levina, and J. Zhu, Consistency of community detection in networks under degree-corrected stochastic block models, The Annals of Statistics, vol.40, issue.4, pp.2266-2292, 2012.