Maximizing utilization of reactivated and left-over catalysts in heavy gas oil hydrotreater: A case study of ADNOC Refining - Archive ouverte HAL Access content directly
Journal Articles Oil & Gas Science and Technology - Revue d'IFP Energies nouvelles Year : 2018

Maximizing utilization of reactivated and left-over catalysts in heavy gas oil hydrotreater: A case study of ADNOC Refining

Abdul-Hamid Chaudhry
  • Function : Author
Alessandro Riva
  • Function : Author
Alain Salameh
  • Function : Author
Gnanapragasam Singaravel
  • Function : Author
Pierre Dufresne
  • Function : Author
Stephane Morin
  • Function : Author
Mikael Berthod
  • Function : Author

Abstract

Recently, ADNOC Refining Research Center (ARRC) has studied the possibility to maximize the reutilization of left-overs and reactivated hydrodesulfurization catalysts for one of its hydrotreater producing Ultra Low Sulfur Diesel (ULSD) from Heavy Gas Oil (HGO). Based on the refinery inventory, several catalyst configurations composed of different amounts of reactivated and fresh CoMo catalyst, including a full reactivated configuration having a stacked CoMo/NiMo/CoMo combination (50/25/25), have been tested in a pilot-plant reactor under commercially-relevant conditions. Experimental results in terms of reactor bed temperature, H2 consumption, aromatics and diesel yields have been analyzed and compared to the current commercial hydrotreater load and catalyst supplier forecasts for the studied configurations. Results show excellent performances of reactivated catalysts and a strong effect of the NiMo layer in the case of the stacked configuration. In a pure CoMo configuration, up to 75% reactor volume of reactivated catalyst could be utilized without impacting the product quality and cycle length, compared to a full fresh CoMo catalyst load. The full reactivated stacked configuration performed even better than the full fresh CoMo catalyst, without impacting product quality and diesel yield. Potential effect of the reactivated catalysts on the reaction selectivity and the role of the NiMo layer in the stacked configuration are discussed. Pilot-plant experimental data were in strong accordance with catalyst supplier commercial forecasts, emphasizing the quality of the pilot-plant study. Implementation of one of the studied configuration by the refinery could lead to between 30% and 55% savings on the cost of catalyst for the next load.
Fichier principal
Vignette du fichier
ogst180023.pdf (1.95 Mo) Télécharger le fichier
Origin : Publication funded by an institution

Dates and versions

hal-01929062 , version 1 (20-11-2018)

Identifiers

Cite

Paco Laveille, Abdul-Hamid Chaudhry, Alessandro Riva, Alain Salameh, Gnanapragasam Singaravel, et al.. Maximizing utilization of reactivated and left-over catalysts in heavy gas oil hydrotreater: A case study of ADNOC Refining. Oil & Gas Science and Technology - Revue d'IFP Energies nouvelles, 2018, 73, pp.59. ⟨10.2516/ogst/2018053⟩. ⟨hal-01929062⟩

Collections

OGST
92 View
179 Download

Altmetric

Share

Gmail Facebook X LinkedIn More